Uniqueness of Meromorphic Functions with Respect to Their Shifts Concerning Derivatives

Pub Date : 2024-04-25 DOI:10.3103/s1068362324700031
X. H. Huang
{"title":"Uniqueness of Meromorphic Functions with Respect to Their Shifts Concerning Derivatives","authors":"X. H. Huang","doi":"10.3103/s1068362324700031","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>An example in the article shows that the first derivative of <span>\\(f(z)=\\frac{2}{1-e^{-2z}}\\)</span> sharing <span>\\(0\\)</span> CM and <span>\\(1,\\infty\\)</span> IM with its shift <span>\\(\\pi i\\)</span> cannot obtain they are equal. In this paper, we study the uniqueness of meromorphic function sharing small functions with their shifts concerning its <span>\\(k\\)</span>th derivatives. We use a different method from Qi and Yang [1] to improves entire function to meromorphic function, the first derivative to the <span>\\(k\\)</span>th derivatives, and also finite values to small functions. As for <span>\\(k=0\\)</span>, we obtain: Let <span>\\(f(z)\\)</span> be a transcendental meromorphic function of <span>\\(\\rho_{2}(f)&lt;1\\)</span>, let <span>\\(c\\)</span> be a nonzero finite value, and let <span>\\(a(z)\\not\\equiv\\infty,b(z)\\not\\equiv\\infty\\in\\hat{S}(f)\\)</span> be two distinct small functions of <span>\\(f(z)\\)</span> such that <span>\\(a(z)\\)</span> is a periodic function with period <span>\\(c\\)</span> and <span>\\(b(z)\\)</span> is any small function of <span>\\(f(z)\\)</span>. If <span>\\(f(z)\\)</span> and <span>\\(f(z+c)\\)</span> share <span>\\(a(z),\\infty\\)</span> CM, and share <span>\\(b(z)\\)</span> IM, then either <span>\\(f(z)\\equiv f(z+c)\\)</span> or</p><span>$$e^{p(z)}\\equiv\\frac{f(z+c)-a(z+c)}{f(z)-a(z)}\\equiv\\frac{b(z+c)-a(z+c)}{b(z)-a(z)},$$</span><p>where <span>\\(p(z)\\)</span> is a nonconstant entire function of <span>\\(\\rho(p)&lt;1\\)</span> such that <span>\\(e^{p(z+c)}\\equiv e^{p(z)}\\)</span>.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3103/s1068362324700031","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

An example in the article shows that the first derivative of \(f(z)=\frac{2}{1-e^{-2z}}\) sharing \(0\) CM and \(1,\infty\) IM with its shift \(\pi i\) cannot obtain they are equal. In this paper, we study the uniqueness of meromorphic function sharing small functions with their shifts concerning its \(k\)th derivatives. We use a different method from Qi and Yang [1] to improves entire function to meromorphic function, the first derivative to the \(k\)th derivatives, and also finite values to small functions. As for \(k=0\), we obtain: Let \(f(z)\) be a transcendental meromorphic function of \(\rho_{2}(f)<1\), let \(c\) be a nonzero finite value, and let \(a(z)\not\equiv\infty,b(z)\not\equiv\infty\in\hat{S}(f)\) be two distinct small functions of \(f(z)\) such that \(a(z)\) is a periodic function with period \(c\) and \(b(z)\) is any small function of \(f(z)\). If \(f(z)\) and \(f(z+c)\) share \(a(z),\infty\) CM, and share \(b(z)\) IM, then either \(f(z)\equiv f(z+c)\) or

$$e^{p(z)}\equiv\frac{f(z+c)-a(z+c)}{f(z)-a(z)}\equiv\frac{b(z+c)-a(z+c)}{b(z)-a(z)},$$

where \(p(z)\) is a nonconstant entire function of \(\rho(p)<1\) such that \(e^{p(z+c)}\equiv e^{p(z)}\).

分享
查看原文
微变函数关于其偏移的唯一性
Abstract 文章中的一个例子表明,共享 \(0\) CM 和 \(1,\infty\) IM 的 \(f(z)=\frac{2}{1-e^{-2z}}\ 的第一导数与它的移\(\pi i\) 不能得到它们相等。在本文中,我们研究了分担小函数与它们的移(\(k\)th derivatives)的微函数的唯一性。我们采用了与齐和杨[1]不同的方法,将整个函数改进为分形函数,将第一导数改进为\(k\)三次导数,同时将有限值改进为小函数。对于 \(k=0\), 我们得到:设 \(f(z)\) 是 \(\rho_{2}(f)<;1), let \(c\) be a nonzero finite value, and let \(a(z)\not\equiv\infty、b(z)\not\equiv\infty\inhat{S}(f)\) 是两个不同的小函数,使得(a(z)\)是一个周期为(c)的周期函数,而(b(z)\)是(f(z)\)的任何小函数。如果 \(f(z)\) 和 \(f(z+c)\) 共享 \(a(z),\infty\)CM, and share \(b(z)\)IM, then either \(f(z)\equiv f(z+c)\) or$$e^{p(z)}equiv\frac{f(z+c)-a(z+c)}{f(z)-a(z)}equiv\frac{b(z+c)-a(z+c)}{b(z)-a(z)},$$where \(p(z)\) is a nonconstant entire function of \(\rho(p)<;1\) such that \(e^{p(z+c)}\equiv e^{p(z)}\).
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信