On Fractional Kirchhoff Problems with Liouville–Weyl Fractional Derivatives

Pub Date : 2024-04-25 DOI:10.3103/s1068362324700055
N. Nyamoradi, C. E. Torres Ledesma
{"title":"On Fractional Kirchhoff Problems with Liouville–Weyl Fractional Derivatives","authors":"N. Nyamoradi, C. E. Torres Ledesma","doi":"10.3103/s1068362324700055","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>In this paper, we study the following fractional Kirchhoff-type problem with Liouville–Weyl fractional derivatives:</p><span>$$\\begin{cases}\\left[a+b\\left(\\int\\limits_{\\mathbb{R}}(|u|^{2}+|{{}_{-\\infty}}D_{x}^{\\beta}u|^{2})dx\\right)^{\\varrho-1}\\right]({{}_{x}}D_{\\infty}^{\\beta}({{}_{-\\infty}}D_{x}^{\\beta}u)+u)=|u|^{2^{*}_{\\beta}-2}u,in~\\mathbb{R},\\\\ u\\in\\mathbb{I}_{-}^{\\beta}(\\mathbb{R}),\\end{cases}$$</span><p>where <span>\\(\\beta\\in(0,\\frac{1}{2})\\)</span>, <span>\\(\\varrho&gt;1\\)</span>, <span>\\({{}_{-\\infty}}D_{x}^{\\beta}u(\\cdot)\\)</span>, and <span>\\({{}_{x}}D_{\\infty}^{\\beta}u(\\cdot)\\)</span> denote the left and right Liouville–Weyl fractional derivatives, <span>\\(2_{\\beta}^{*}=\\frac{2}{1-2\\beta}\\)</span> is fractional critical Sobolev exponent <span>\\(a\\geq 0\\)</span> and <span>\\(b&gt;0\\)</span>. Under suitable values of the parameters <span>\\(\\varrho\\)</span>, <span>\\(a\\)</span> and <span>\\(b\\)</span>, we obtain a nonexistence result of nontrivial solutions of infinitely many nontrivial solutions for the above problem.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3103/s1068362324700055","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we study the following fractional Kirchhoff-type problem with Liouville–Weyl fractional derivatives:

$$\begin{cases}\left[a+b\left(\int\limits_{\mathbb{R}}(|u|^{2}+|{{}_{-\infty}}D_{x}^{\beta}u|^{2})dx\right)^{\varrho-1}\right]({{}_{x}}D_{\infty}^{\beta}({{}_{-\infty}}D_{x}^{\beta}u)+u)=|u|^{2^{*}_{\beta}-2}u,in~\mathbb{R},\\ u\in\mathbb{I}_{-}^{\beta}(\mathbb{R}),\end{cases}$$

where \(\beta\in(0,\frac{1}{2})\), \(\varrho>1\), \({{}_{-\infty}}D_{x}^{\beta}u(\cdot)\), and \({{}_{x}}D_{\infty}^{\beta}u(\cdot)\) denote the left and right Liouville–Weyl fractional derivatives, \(2_{\beta}^{*}=\frac{2}{1-2\beta}\) is fractional critical Sobolev exponent \(a\geq 0\) and \(b>0\). Under suitable values of the parameters \(\varrho\), \(a\) and \(b\), we obtain a nonexistence result of nontrivial solutions of infinitely many nontrivial solutions for the above problem.

分享
查看原文
论带柳维尔-韦尔分式导数的分式基尔霍夫问题
摘要 在本文中,我们研究了以下带有Liouville-Weyl分数导数的分数基尔霍夫型问题:$$\begin{cases}\left[a+b\left(\int\limits_{\mathbb{R}}(|u|^{2}+|{{}_{-\infty}}D_{x}^{\beta}u|^{2})dx\right)^{\varrho-1}\right]({{}_{x}}D_{\infty}^{\beta}({{}_{-\infty}}D_{x}^{\beta}u)+u)=|u|^{2^{*}_{\beta}-2}u,in~\mathbb{R},\\ u\in\mathbb{I}_{-}^{\beta}(\mathbb{R}),\end{cases}$$where \(\beta\in(0,\frac{1}{2})\), \(\varrho>1), ({{}_{-\infty}}D_{x}^{\beta}u(\cdot)), 和 ({{}_{x}}D_{\infty}^{\beta}u(\cdot))分别表示左右两个Liouville-Weyl分数导数、\(2_{\beta}^{*}=\frac{2}{1-2\beta}\)是分数临界索博列夫指数 (a\geq 0\) and\(b>;0\).在参数\(varrho\)、\(a\)和\(b\)的合适值下,我们得到了上述问题无穷多非微观解的不存在结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信