{"title":"On Fractional Kirchhoff Problems with Liouville–Weyl Fractional Derivatives","authors":"N. Nyamoradi, C. E. Torres Ledesma","doi":"10.3103/s1068362324700055","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>In this paper, we study the following fractional Kirchhoff-type problem with Liouville–Weyl fractional derivatives:</p><span>$$\\begin{cases}\\left[a+b\\left(\\int\\limits_{\\mathbb{R}}(|u|^{2}+|{{}_{-\\infty}}D_{x}^{\\beta}u|^{2})dx\\right)^{\\varrho-1}\\right]({{}_{x}}D_{\\infty}^{\\beta}({{}_{-\\infty}}D_{x}^{\\beta}u)+u)=|u|^{2^{*}_{\\beta}-2}u,in~\\mathbb{R},\\\\ u\\in\\mathbb{I}_{-}^{\\beta}(\\mathbb{R}),\\end{cases}$$</span><p>where <span>\\(\\beta\\in(0,\\frac{1}{2})\\)</span>, <span>\\(\\varrho>1\\)</span>, <span>\\({{}_{-\\infty}}D_{x}^{\\beta}u(\\cdot)\\)</span>, and <span>\\({{}_{x}}D_{\\infty}^{\\beta}u(\\cdot)\\)</span> denote the left and right Liouville–Weyl fractional derivatives, <span>\\(2_{\\beta}^{*}=\\frac{2}{1-2\\beta}\\)</span> is fractional critical Sobolev exponent <span>\\(a\\geq 0\\)</span> and <span>\\(b>0\\)</span>. Under suitable values of the parameters <span>\\(\\varrho\\)</span>, <span>\\(a\\)</span> and <span>\\(b\\)</span>, we obtain a nonexistence result of nontrivial solutions of infinitely many nontrivial solutions for the above problem.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3103/s1068362324700055","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, we study the following fractional Kirchhoff-type problem with Liouville–Weyl fractional derivatives:
where \(\beta\in(0,\frac{1}{2})\), \(\varrho>1\), \({{}_{-\infty}}D_{x}^{\beta}u(\cdot)\), and \({{}_{x}}D_{\infty}^{\beta}u(\cdot)\) denote the left and right Liouville–Weyl fractional derivatives, \(2_{\beta}^{*}=\frac{2}{1-2\beta}\) is fractional critical Sobolev exponent \(a\geq 0\) and \(b>0\). Under suitable values of the parameters \(\varrho\), \(a\) and \(b\), we obtain a nonexistence result of nontrivial solutions of infinitely many nontrivial solutions for the above problem.