{"title":"Efficient solver of relativistic hydrodynamics with implicit Runge-Kutta method","authors":"Nathan Touroux, Masakiyo Kitazawa, Koichi Murase, Marlene Nahrgang","doi":"10.1093/ptep/ptae058","DOIUrl":null,"url":null,"abstract":"We propose a new method to solve the relativistic hydrodynamic equations based on implicit Runge-Kutta methods with a locally optimized fixed-point iterative solver. For numerical demonstration, we implement our idea for ideal hydrodynamics using the one-stage Gauss-Legendre method as an implicit method. The accuracy and computational cost of our new method are compared with those of explicit ones for the (1+1)-dimensional Riemann problem, as well as the (2+1)-dimensional Gubser flow and event-by-event initial conditions for heavy-ion collisions generated by TRENTo. We demonstrate that the solver converges with only one iteration in most cases, and as a result, the implicit method requires a smaller computational cost than the explicit one at the same accuracy in these cases, while it may not converge with an unrealistically large Δt. By showing a relationship between the one-stage Gauss-Legendre method with the iterative solver and the two-step Adams-Bashforth method, we argue that our method benefits from both the stability of the former and the efficiency of the latter.","PeriodicalId":20710,"journal":{"name":"Progress of Theoretical and Experimental Physics","volume":"78 1","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress of Theoretical and Experimental Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1093/ptep/ptae058","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0
Abstract
We propose a new method to solve the relativistic hydrodynamic equations based on implicit Runge-Kutta methods with a locally optimized fixed-point iterative solver. For numerical demonstration, we implement our idea for ideal hydrodynamics using the one-stage Gauss-Legendre method as an implicit method. The accuracy and computational cost of our new method are compared with those of explicit ones for the (1+1)-dimensional Riemann problem, as well as the (2+1)-dimensional Gubser flow and event-by-event initial conditions for heavy-ion collisions generated by TRENTo. We demonstrate that the solver converges with only one iteration in most cases, and as a result, the implicit method requires a smaller computational cost than the explicit one at the same accuracy in these cases, while it may not converge with an unrealistically large Δt. By showing a relationship between the one-stage Gauss-Legendre method with the iterative solver and the two-step Adams-Bashforth method, we argue that our method benefits from both the stability of the former and the efficiency of the latter.
期刊介绍:
Progress of Theoretical and Experimental Physics (PTEP) is an international journal that publishes articles on theoretical and experimental physics. PTEP is a fully open access, online-only journal published by the Physical Society of Japan.
PTEP is the successor to Progress of Theoretical Physics (PTP), which terminated in December 2012 and merged into PTEP in January 2013.
PTP was founded in 1946 by Hideki Yukawa, the first Japanese Nobel Laureate. PTEP, the successor journal to PTP, has a broader scope than that of PTP covering both theoretical and experimental physics.
PTEP mainly covers areas including particles and fields, nuclear physics, astrophysics and cosmology, beam physics and instrumentation, and general and mathematical physics.