{"title":"A Convex Approximation Method for Smoothing Out Control of Voltage Profile at a Critical Distribution Bus Under Sharp PV Power Fluctuations","authors":"Xuanyi Xiao;Zhiyi Li;Xutao Han;Wen Huang;Guanzhong Wang;Mohammad Shahidehpour","doi":"10.1109/TSTE.2024.3394148","DOIUrl":null,"url":null,"abstract":"The high penetration of photovoltaic (PV) panels in a distribution system could cause sharp fluctuations in bus voltages. This phenomenon could induce abnormal operations in high-precision equipment or result in erroneous computer memory functions. To handle this issue, this paper proposes a voltage control to smooth out a critical bus voltage, without utilizing the local controllable devices, while maintaining the bus voltages across the distribution system within the allowable range. First, a smoothing out control of voltage is proposed and theoretically proved to mitigate the voltage fluctuations at the critical bus by the first-order inertia. Second, an optimization model is proposed for the coordinated voltage control, which coordinates the actions of discrete control devices with the smoothing out control of PV inverters. A novel convex approximation method is proposed to transform the nonconvex model into an approximate convex model. It is theoretically proved that the solutions obtained by solving the approximation model can control the bus voltages across the distribution system within the allowable range. Last, the proposed voltage control is simulated in 15-bus and 51-bus distribution systems. The 6-minute and 24-hour simulations show that a single voltage fluctuation and the sum of squared voltage fluctuations at a critical bus are reduced by 22.4% and 36.5%, respectively, as compared to the results offered by using the existing benchmark control method.","PeriodicalId":452,"journal":{"name":"IEEE Transactions on Sustainable Energy","volume":"15 3","pages":"2038-2049"},"PeriodicalIF":8.6000,"publicationDate":"2024-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Sustainable Energy","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10508810/","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
The high penetration of photovoltaic (PV) panels in a distribution system could cause sharp fluctuations in bus voltages. This phenomenon could induce abnormal operations in high-precision equipment or result in erroneous computer memory functions. To handle this issue, this paper proposes a voltage control to smooth out a critical bus voltage, without utilizing the local controllable devices, while maintaining the bus voltages across the distribution system within the allowable range. First, a smoothing out control of voltage is proposed and theoretically proved to mitigate the voltage fluctuations at the critical bus by the first-order inertia. Second, an optimization model is proposed for the coordinated voltage control, which coordinates the actions of discrete control devices with the smoothing out control of PV inverters. A novel convex approximation method is proposed to transform the nonconvex model into an approximate convex model. It is theoretically proved that the solutions obtained by solving the approximation model can control the bus voltages across the distribution system within the allowable range. Last, the proposed voltage control is simulated in 15-bus and 51-bus distribution systems. The 6-minute and 24-hour simulations show that a single voltage fluctuation and the sum of squared voltage fluctuations at a critical bus are reduced by 22.4% and 36.5%, respectively, as compared to the results offered by using the existing benchmark control method.
期刊介绍:
The IEEE Transactions on Sustainable Energy serves as a pivotal platform for sharing groundbreaking research findings on sustainable energy systems, with a focus on their seamless integration into power transmission and/or distribution grids. The journal showcases original research spanning the design, implementation, grid-integration, and control of sustainable energy technologies and systems. Additionally, the Transactions warmly welcomes manuscripts addressing the design, implementation, and evaluation of power systems influenced by sustainable energy systems and devices.