CLT for $$\beta $$ -Ensembles at High Temperature and for Integrable Systems: A Transfer Operator Approach

IF 1.4 3区 物理与天体物理 Q2 PHYSICS, MATHEMATICAL
G. Mazzuca, R. Memin
{"title":"CLT for $$\\beta $$ -Ensembles at High Temperature and for Integrable Systems: A Transfer Operator Approach","authors":"G. Mazzuca, R. Memin","doi":"10.1007/s00023-024-01435-0","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we prove a polynomial central limit theorem for several integrable models and for the <span>\\(\\beta \\)</span>-ensembles at high temperature with polynomial potential. Furthermore, we connect the mean values, the variances and the correlations of the moments of the Lax matrices of these integrable systems with the ones of the <span>\\(\\beta \\)</span>-ensembles. Moreover, we show that the local functions’ space-correlations decay exponentially fast for the considered integrable systems. For these models, we also established a Berry–Esseen-type bound.\n</p>","PeriodicalId":463,"journal":{"name":"Annales Henri Poincaré","volume":"101 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2024-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales Henri Poincaré","FirstCategoryId":"4","ListUrlMain":"https://doi.org/10.1007/s00023-024-01435-0","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we prove a polynomial central limit theorem for several integrable models and for the \(\beta \)-ensembles at high temperature with polynomial potential. Furthermore, we connect the mean values, the variances and the correlations of the moments of the Lax matrices of these integrable systems with the ones of the \(\beta \)-ensembles. Moreover, we show that the local functions’ space-correlations decay exponentially fast for the considered integrable systems. For these models, we also established a Berry–Esseen-type bound.

Abstract Image

用于高温下 $$\beta $$ 组合和可积分系统的 CLT:转移算子方法
在本文中,我们证明了几种可积分模型的多项式中心极限定理,以及高温下具有多项式势的\(\beta \)-符号的多项式中心极限定理。此外,我们将这些可积分系统的 Lax 矩阵的均值、方差和相关性与 \(β\)-ensembles 矩阵的均值、方差和相关性联系起来。此外,我们还证明,对于所考虑的可积分系统,局部函数的空间相关性呈指数级快速衰减。对于这些模型,我们还建立了贝里-埃森型约束。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Annales Henri Poincaré
Annales Henri Poincaré 物理-物理:粒子与场物理
CiteScore
3.00
自引率
6.70%
发文量
108
审稿时长
6-12 weeks
期刊介绍: The two journals Annales de l''Institut Henri Poincaré, physique théorique and Helvetica Physical Acta merged into a single new journal under the name Annales Henri Poincaré - A Journal of Theoretical and Mathematical Physics edited jointly by the Institut Henri Poincaré and by the Swiss Physical Society. The goal of the journal is to serve the international scientific community in theoretical and mathematical physics by collecting and publishing original research papers meeting the highest professional standards in the field. The emphasis will be on analytical theoretical and mathematical physics in a broad sense.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信