Triviality Results and Conjugate Radius Estimation of Ricci Solitons

Absos Ali Shaikh, Prosenjit Mandal, V. Amarendra Babu
{"title":"Triviality Results and Conjugate Radius Estimation of Ricci Solitons","authors":"Absos Ali Shaikh, Prosenjit Mandal, V. Amarendra Babu","doi":"10.1007/s00574-024-00396-6","DOIUrl":null,"url":null,"abstract":"<p>The investigation of Ricci solitons is the focus of this work. We have proved triviality results for compact gradient Ricci soliton under certain restriction. Later, a rigidity result is derived for a compact gradient shrinking Ricci soliton. Also, we have estimated the conjugate radius for non-compact gradient shrinking Ricci soliton with superharmonic potential. Moreover, an upper bound for the conjugate radius of Ricci soliton with concircular potential vector field is determined. Finally, it is proved that a non-compact gradient Ricci soliton with a pole and non-negative Ricci curvature is non-shrinking.</p>","PeriodicalId":501417,"journal":{"name":"Bulletin of the Brazilian Mathematical Society, New Series","volume":"33 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the Brazilian Mathematical Society, New Series","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00574-024-00396-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The investigation of Ricci solitons is the focus of this work. We have proved triviality results for compact gradient Ricci soliton under certain restriction. Later, a rigidity result is derived for a compact gradient shrinking Ricci soliton. Also, we have estimated the conjugate radius for non-compact gradient shrinking Ricci soliton with superharmonic potential. Moreover, an upper bound for the conjugate radius of Ricci soliton with concircular potential vector field is determined. Finally, it is proved that a non-compact gradient Ricci soliton with a pole and non-negative Ricci curvature is non-shrinking.

利玛窦孤子的琐碎性结果和共轭半径估计
对利玛窦孤子的研究是这项工作的重点。我们证明了紧凑梯度利玛窦孤子在某些限制条件下的三性结果。随后,我们推导出了紧凑梯度收缩利玛窦孤子的刚性结果。此外,我们还估算了具有超谐波势的非紧凑梯度收缩利玛窦孤子的共轭半径。此外,我们还确定了具有协和势矢量场的利玛窦孤子共轭半径的上限。最后,证明了具有极点和非负利玛窦曲率的非紧凑梯度利玛窦孤子是不收缩的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信