{"title":"Multiplicative arithmetic functions and the generalized Ewens measure","authors":"Dor Elboim, Ofir Gorodetsky","doi":"10.1007/s11856-024-2609-x","DOIUrl":null,"url":null,"abstract":"<p>Random integers, sampled uniformly from [1, <i>x</i>], share similarities with random permutations, sampled uniformly from <i>S</i><sub><i>n</i></sub>. These similarities include the Erdős–Kac theorem on the distribution of the number of prime factors of a random integer, and Billingsley’s theorem on the largest prime factors of a random integer. In this paper we extend this analogy to non-uniform distributions.</p><p>Given a multiplicative function <i>α</i>: ℕ → ℝ<sub>≥0</sub>, one may associate with it a measure on the integers in [1, <i>x</i>], where <i>n</i> is sampled with probability proportional to the value <i>α</i>(<i>n</i>). Analogously, given a sequence {<i>θ</i><sub><i>i</i></sub>}<sub><i>i</i>≥1</sub> of non-negative reals, one may associate with it a measure on <i>S</i><sub><i>n</i></sub> that assigns to a permutation a probability proportional to a product of weights over the cycles of the permutation. This measure is known as the generalized Ewens measure.</p><p>We study the case where the mean value of <i>α</i> over primes tends to some positive <i>θ</i>, as well as the weights <i>α</i>(<i>p</i>) ≈ (log <i>p</i>)<sup><i>γ</i></sup>. In both cases, we obtain results in the integer setting which are in agreement with those in the permutation setting.</p>","PeriodicalId":14661,"journal":{"name":"Israel Journal of Mathematics","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2024-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Israel Journal of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11856-024-2609-x","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Random integers, sampled uniformly from [1, x], share similarities with random permutations, sampled uniformly from Sn. These similarities include the Erdős–Kac theorem on the distribution of the number of prime factors of a random integer, and Billingsley’s theorem on the largest prime factors of a random integer. In this paper we extend this analogy to non-uniform distributions.
Given a multiplicative function α: ℕ → ℝ≥0, one may associate with it a measure on the integers in [1, x], where n is sampled with probability proportional to the value α(n). Analogously, given a sequence {θi}i≥1 of non-negative reals, one may associate with it a measure on Sn that assigns to a permutation a probability proportional to a product of weights over the cycles of the permutation. This measure is known as the generalized Ewens measure.
We study the case where the mean value of α over primes tends to some positive θ, as well as the weights α(p) ≈ (log p)γ. In both cases, we obtain results in the integer setting which are in agreement with those in the permutation setting.
期刊介绍:
The Israel Journal of Mathematics is an international journal publishing high-quality original research papers in a wide spectrum of pure and applied mathematics. The prestigious interdisciplinary editorial board reflects the diversity of subjects covered in this journal, including set theory, model theory, algebra, group theory, number theory, analysis, functional analysis, ergodic theory, algebraic topology, geometry, combinatorics, theoretical computer science, mathematical physics, and applied mathematics.