On the diameter of Cayley graphs of classical groups with generating sets containing a transvection

IF 0.8 2区 数学 Q2 MATHEMATICS
Martino Garonzi, Zoltán Halasi, Gábor Somlai
{"title":"On the diameter of Cayley graphs of classical groups with generating sets containing a transvection","authors":"Martino Garonzi, Zoltán Halasi, Gábor Somlai","doi":"10.1007/s11856-024-2605-1","DOIUrl":null,"url":null,"abstract":"<p>A well-known conjecture of Babai states that if <i>G</i> is any finite simple group and <i>X</i> is a generating set for <i>G</i>, then the diameter of the Cayley graph Cay(<i>G</i>, <i>X</i>) is bounded by log ∣<i>G</i>∣<sup><i>c</i></sup> for some universal constant <i>c</i>. In this paper, we prove such a bound for Cay(<i>G</i>, <i>X</i>) for <i>G</i> = PSL(<i>n</i>, <i>q</i>), PSp(<i>n</i>, <i>q</i>) or PSU(<i>n</i>, <i>q</i>) where <i>q</i> is odd, under the assumptions that <i>X</i> contains a transvection and <i>q</i> ≠ 9 or 81.</p>","PeriodicalId":14661,"journal":{"name":"Israel Journal of Mathematics","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2024-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Israel Journal of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11856-024-2605-1","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

A well-known conjecture of Babai states that if G is any finite simple group and X is a generating set for G, then the diameter of the Cayley graph Cay(G, X) is bounded by log ∣Gc for some universal constant c. In this paper, we prove such a bound for Cay(G, X) for G = PSL(n, q), PSp(n, q) or PSU(n, q) where q is odd, under the assumptions that X contains a transvection and q ≠ 9 or 81.

关于经典群的卡莱图直径,其生成集包含一个横切面
Babai 的一个著名猜想指出,如果 G 是任意有限单纯群,X 是 G 的一个生成集,那么对于某个普遍常数 c,Cayley 图 Cay(G, X) 的直径以 log ∣G∣c 为界。在本文中,我们将证明对于 G = PSL(n,q)、PSp(n,q) 或 PSU(n,q)(其中 q 为奇数)的 Cay(G,X),在 X 包含一个横切面且 q ≠ 9 或 81 的假设条件下,Cay(G,X) 的这样一个约束。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.70
自引率
10.00%
发文量
90
审稿时长
6 months
期刊介绍: The Israel Journal of Mathematics is an international journal publishing high-quality original research papers in a wide spectrum of pure and applied mathematics. The prestigious interdisciplinary editorial board reflects the diversity of subjects covered in this journal, including set theory, model theory, algebra, group theory, number theory, analysis, functional analysis, ergodic theory, algebraic topology, geometry, combinatorics, theoretical computer science, mathematical physics, and applied mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信