Fabian Hennig, Kristóf Tóth, Moritz Förster and Philipp Bitzenbauer
{"title":"A new teaching-learning sequence to promote secondary school students’ learning of quantum physics using Dirac notation","authors":"Fabian Hennig, Kristóf Tóth, Moritz Förster and Philipp Bitzenbauer","doi":"10.1088/1361-6552/ad353d","DOIUrl":null,"url":null,"abstract":"This paper describes the design of a new teaching-learning sequence on quantum physics aimed at upper secondary school students. In this teaching-learning sequence, GeoGebra simulations and interactive screen experiments are used to investigate the behaviour of a single photon at beam splitter and single photon interference in a Michelson interferometer. We propose a minimal formalism using Dirac notation, which avoids complex numbers and elaborate vector calculus, to make a quantitative description of the quantum optics experiments accessible to secondary school students. With this new educational pathway, we take into account findings from physics education research, which suggest that the introduction of a mathematical formalism tailored to students’ abilities might help them to overcome naive-realist views of quanta or space-time descriptions of quantum phenomena, while at the same time facilitating a transition to a functional understanding of quantum models.","PeriodicalId":39773,"journal":{"name":"Physics Education","volume":"101 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics Education","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1361-6552/ad353d","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Social Sciences","Score":null,"Total":0}
引用次数: 0
Abstract
This paper describes the design of a new teaching-learning sequence on quantum physics aimed at upper secondary school students. In this teaching-learning sequence, GeoGebra simulations and interactive screen experiments are used to investigate the behaviour of a single photon at beam splitter and single photon interference in a Michelson interferometer. We propose a minimal formalism using Dirac notation, which avoids complex numbers and elaborate vector calculus, to make a quantitative description of the quantum optics experiments accessible to secondary school students. With this new educational pathway, we take into account findings from physics education research, which suggest that the introduction of a mathematical formalism tailored to students’ abilities might help them to overcome naive-realist views of quanta or space-time descriptions of quantum phenomena, while at the same time facilitating a transition to a functional understanding of quantum models.
期刊介绍:
Physics Education seeks to serve the physics teaching community and we welcome contributions from teachers. We seek to support the teaching of physics to students aged 11 up to introductory undergraduate level. We aim to provide professional development and support for teachers of physics around the world by providing: a forum for practising teachers to make an active contribution to the physics teaching community; knowledge updates in physics, educational research and relevant wider curriculum developments; and strategies for teaching and classroom management that will engage and motivate students.