Generic norm growth of powers of homogeneous unimodular Fourier multipliers

IF 0.5 4区 数学 Q3 MATHEMATICS
Aleksandar Bulj
{"title":"Generic norm growth of powers of homogeneous unimodular Fourier multipliers","authors":"Aleksandar Bulj","doi":"10.1007/s00013-024-01994-y","DOIUrl":null,"url":null,"abstract":"<div><p>For an integer <span>\\(d\\ge 2\\)</span>, <span>\\(t\\in \\mathbb {R}\\)</span>, and a 0-homogeneous function <span>\\(\\Phi \\in C^{\\infty }(\\mathbb {R}^{d}{\\setminus }\\{0\\},\\mathbb {R})\\)</span>, we consider the family of Fourier multiplier operators <span>\\(T_{\\Phi }^t\\)</span> associated with symbols <span>\\(\\xi \\mapsto \\exp (it\\Phi (\\xi ))\\)</span> and prove that for a generic phase function <span>\\(\\Phi \\)</span>, one has the estimate <span>\\(\\Vert T_{\\Phi }^t\\Vert _{L^p\\rightarrow L^p} \\gtrsim _{d,p, \\Phi }\\langle t\\rangle ^{d|\\frac{1}{p}-\\frac{1}{2}|}\\)</span>. That is the maximal possible order of growth in <span>\\(t\\rightarrow \\pm \\infty \\)</span>, according to the previous work by V. Kovač and the author and the result shows that the two special examples of functions <span>\\(\\Phi \\)</span> that induce the maximal growth, given by V. Kovač and the author and independently by D. Stolyarov, to disprove a conjecture of Maz’ya actually exhibit the same general phenomenon.</p></div>","PeriodicalId":8346,"journal":{"name":"Archiv der Mathematik","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2024-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archiv der Mathematik","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00013-024-01994-y","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

For an integer \(d\ge 2\), \(t\in \mathbb {R}\), and a 0-homogeneous function \(\Phi \in C^{\infty }(\mathbb {R}^{d}{\setminus }\{0\},\mathbb {R})\), we consider the family of Fourier multiplier operators \(T_{\Phi }^t\) associated with symbols \(\xi \mapsto \exp (it\Phi (\xi ))\) and prove that for a generic phase function \(\Phi \), one has the estimate \(\Vert T_{\Phi }^t\Vert _{L^p\rightarrow L^p} \gtrsim _{d,p, \Phi }\langle t\rangle ^{d|\frac{1}{p}-\frac{1}{2}|}\). That is the maximal possible order of growth in \(t\rightarrow \pm \infty \), according to the previous work by V. Kovač and the author and the result shows that the two special examples of functions \(\Phi \) that induce the maximal growth, given by V. Kovač and the author and independently by D. Stolyarov, to disprove a conjecture of Maz’ya actually exhibit the same general phenomenon.

同质单模态傅里叶乘数幂的通用规范增长
对于一个整数\(d\ge 2\), \(t\in \mathbb {R}\),以及一个 0-同调函数 \(\Phi \in C^{infty }(\mathbb {R}^{d}\{setminus }\{0\},\mathbb {R})\)、我们考虑与符号 \(\xi \mapsto \exp (it\Phi (\xi ))\) 相关联的傅立叶乘法算子族 \(T_{\Phi }^t\) 并证明对于一个通用的相位函数 \(\Phi \),我们有估计 \(\Vert T_{\Phi }^t\Vert _{L^p\rightarrow L^p}\gtrsim _{d,p, \Phi }\langle t\rangle ^{d|\frac{1}{p}-\frac{1}{2}|}\).根据科瓦奇(V. Kovač)和作者之前的研究,这就是 \(t\rightarrow \pm \infty \)中可能的最大增长阶数,而结果表明,科瓦奇和作者给出的,以及斯托利亚洛夫(D. Stolyarov)独立给出的两个引起最大增长的函数 \(\Phi \)的特例,为了推翻马兹亚(Maz'ya)的猜想,实际上展示了相同的一般现象。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Archiv der Mathematik
Archiv der Mathematik 数学-数学
CiteScore
1.10
自引率
0.00%
发文量
117
审稿时长
4-8 weeks
期刊介绍: Archiv der Mathematik (AdM) publishes short high quality research papers in every area of mathematics which are not overly technical in nature and addressed to a broad readership.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信