{"title":"Stochastic second-gradient continuum theory for particle-based materials: part II","authors":"Gabriele La Valle, Christian Soize","doi":"10.1007/s00033-024-02232-9","DOIUrl":null,"url":null,"abstract":"<p>This article is the second part of a previous article devoted to the deterministic aspects. Here, we present a comprehensive study on the development and application of a novel stochastic second-gradient continuum model for particle-based materials. An application is presented concerning colloidal crystals. Since we are dealing with particle-based materials, factors such as the topology of contacts, particle sizes, shapes, and geometric structure are not considered. The mechanical properties of the introduced second-gradient continuum are modeled as random fields to account for uncertainties. The stochastic computational model is based on a mixed finite element (FE), and the Monte Carlo (MC) numerical simulation method is used as a stochastic solver. Finally, the resulting stochastic second-gradient model is applied to analyze colloidal crystals, which have wide-ranging applications. The simulations show the effects of second-order gradient on the mechanical response of a colloidal crystal under axial load, for which there could be significant fluctuations in the displacements.\n</p>","PeriodicalId":501481,"journal":{"name":"Zeitschrift für angewandte Mathematik und Physik","volume":"10 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Zeitschrift für angewandte Mathematik und Physik","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00033-024-02232-9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
This article is the second part of a previous article devoted to the deterministic aspects. Here, we present a comprehensive study on the development and application of a novel stochastic second-gradient continuum model for particle-based materials. An application is presented concerning colloidal crystals. Since we are dealing with particle-based materials, factors such as the topology of contacts, particle sizes, shapes, and geometric structure are not considered. The mechanical properties of the introduced second-gradient continuum are modeled as random fields to account for uncertainties. The stochastic computational model is based on a mixed finite element (FE), and the Monte Carlo (MC) numerical simulation method is used as a stochastic solver. Finally, the resulting stochastic second-gradient model is applied to analyze colloidal crystals, which have wide-ranging applications. The simulations show the effects of second-order gradient on the mechanical response of a colloidal crystal under axial load, for which there could be significant fluctuations in the displacements.