Remarks on the existence of minimal models of log canonical generalized pairs

IF 1 3区 数学 Q1 MATHEMATICS
Nikolaos Tsakanikas, Lingyao Xie
{"title":"Remarks on the existence of minimal models of log canonical generalized pairs","authors":"Nikolaos Tsakanikas, Lingyao Xie","doi":"10.1007/s00209-024-03489-6","DOIUrl":null,"url":null,"abstract":"<p>Given an NQC log canonical generalized pair <span>\\((X,B+M)\\)</span> whose underlying variety <i>X</i> is not necessarily <span>\\(\\mathbb {Q}\\)</span>-factorial, we show that one may run a <span>\\((K_X+B+M)\\)</span>-MMP with scaling of an ample divisor which terminates, provided that <span>\\((X,B+M)\\)</span> has a minimal model in a weaker sense or that <span>\\(K_X+B+M\\)</span> is not pseudo-effective. We also prove the existence of minimal models of pseudo-effective NQC log canonical generalized pairs under various additional assumptions, for instance when the boundary contains an ample divisor.</p>","PeriodicalId":18278,"journal":{"name":"Mathematische Zeitschrift","volume":"15 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2024-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematische Zeitschrift","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00209-024-03489-6","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Given an NQC log canonical generalized pair \((X,B+M)\) whose underlying variety X is not necessarily \(\mathbb {Q}\)-factorial, we show that one may run a \((K_X+B+M)\)-MMP with scaling of an ample divisor which terminates, provided that \((X,B+M)\) has a minimal model in a weaker sense or that \(K_X+B+M\) is not pseudo-effective. We also prove the existence of minimal models of pseudo-effective NQC log canonical generalized pairs under various additional assumptions, for instance when the boundary contains an ample divisor.

Abstract Image

关于对数典范广义对的最小模型存在性的评论
给定一个 NQC log canonical generalized pair ((X,B+M)),其底层综X不一定是 \(\mathbb {Q}\)-因子、我们证明,只要 \((X,B+M)\) 在较弱的意义上有一个最小模型,或者 \(K_X+B+M\) 不是伪有效的,那么我们就可以运行一个有缩放的充要分数的 \((K_X+B+M)\)-MMP 来终止。我们还证明了伪有效 NQC log 典范广义对的极小模型在各种附加假设下的存在,例如当边界包含一个充裕的除数时。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.60
自引率
0.00%
发文量
236
审稿时长
3-6 weeks
期刊介绍: "Mathematische Zeitschrift" is devoted to pure and applied mathematics. Reviews, problems etc. will not be published.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信