On the homology of partial group actions

Emmanuel Jerez
{"title":"On the homology of partial group actions","authors":"Emmanuel Jerez","doi":"arxiv-2404.14650","DOIUrl":null,"url":null,"abstract":"We study the partial group (co)homology of partial group actions using\nsimplicial methods. We introduce the concept of universal globalization of a\npartial group action on a $K$-module and prove that, given a partial\nrepresentation of $G$ on $M$, the partial group homology $H^{par}_{\\bullet}(G,\nM)$ is naturally isomorphic to the usual group homology $H_{\\bullet}(G, KG\n\\otimes_{G_{par}} M)$, where $KG \\otimes_{G_{par}} M$ is the universal\nglobalization of the partial group action associated to $M$. We dualize this\nresult into a cohomological spectral sequence converging to\n$H^{\\bullet}_{par}(G,M)$.","PeriodicalId":501143,"journal":{"name":"arXiv - MATH - K-Theory and Homology","volume":"7 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - K-Theory and Homology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2404.14650","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We study the partial group (co)homology of partial group actions using simplicial methods. We introduce the concept of universal globalization of a partial group action on a $K$-module and prove that, given a partial representation of $G$ on $M$, the partial group homology $H^{par}_{\bullet}(G, M)$ is naturally isomorphic to the usual group homology $H_{\bullet}(G, KG \otimes_{G_{par}} M)$, where $KG \otimes_{G_{par}} M$ is the universal globalization of the partial group action associated to $M$. We dualize this result into a cohomological spectral sequence converging to $H^{\bullet}_{par}(G,M)$.
论部分群作用的同源性
我们用简单的方法研究部分群作用的部分群(共)同调。我们引入了 $K$ 模块上部分群作用的普适全局化概念,并证明给定 $G$ 在 $M$ 上的部分表示,部分群同调 $H^{par}_{\bullet}(G,M)$ 自然地与通常的群同调 $H_{\bullet}(G, KG\otimes_{G_{par}} M)$ 同构,其中 $KG \otimes_{G_{par}} 是与 $M$ 相关的部分群作用的普适全局化。M$ 是与 $M$ 相关的部分群作用的通用全局化。我们将这一结果对偶化为收敛于$H^{\bullet}_{par}(G,M)$的同调谱序列。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信