On the dynamic asymptotic dimension of étale groupoids

IF 1 3区 数学 Q1 MATHEMATICS
Christian Bönicke
{"title":"On the dynamic asymptotic dimension of étale groupoids","authors":"Christian Bönicke","doi":"10.1007/s00209-024-03492-x","DOIUrl":null,"url":null,"abstract":"<p>We investigate the dynamic asymptotic dimension for étale groupoids introduced by Guentner, Willett and Yu. In particular, we establish several permanence properties, including estimates for products and unions of groupoids. We also establish invariance of the dynamic asymptotic dimension under Morita equivalence. In the second part of the article, we consider a canonical coarse structure on an étale groupoid, and compare the asymptotic dimension of the resulting coarse space with the dynamic asymptotic dimension of the underlying groupoid.</p>","PeriodicalId":18278,"journal":{"name":"Mathematische Zeitschrift","volume":"292 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2024-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematische Zeitschrift","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00209-024-03492-x","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We investigate the dynamic asymptotic dimension for étale groupoids introduced by Guentner, Willett and Yu. In particular, we establish several permanence properties, including estimates for products and unions of groupoids. We also establish invariance of the dynamic asymptotic dimension under Morita equivalence. In the second part of the article, we consider a canonical coarse structure on an étale groupoid, and compare the asymptotic dimension of the resulting coarse space with the dynamic asymptotic dimension of the underlying groupoid.

论埃塔莱群集的动态渐近维度
我们研究了由 Guentner、Willett 和 Yu 引入的 étale 子群的动态渐近维度。特别是,我们建立了几个永恒性质,包括对群集的乘积和联合的估计。我们还建立了动态渐近维度在莫里塔等价性下的不变性。在文章的第二部分,我们考虑了一个 étale 类群上的典型粗糙结构,并比较了所得到的粗糙空间的渐近维度与底层类群的动态渐近维度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.60
自引率
0.00%
发文量
236
审稿时长
3-6 weeks
期刊介绍: "Mathematische Zeitschrift" is devoted to pure and applied mathematics. Reviews, problems etc. will not be published.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信