Solutions of local and nonlocal discrete complex modified Korteweg-de Vries equations and continuum limits

Ya-Nan Hu, Shou-Feng Shen, Song-lin Zhao
{"title":"Solutions of local and nonlocal discrete complex modified Korteweg-de Vries equations and continuum limits","authors":"Ya-Nan Hu, Shou-Feng Shen, Song-lin Zhao","doi":"arxiv-2404.14150","DOIUrl":null,"url":null,"abstract":"Cauchy matrix approach for the discrete Ablowitz-Kaup-Newell-Segur equations\nis reconsidered, where two `proper' discrete Ablowitz-Kaup-Newell-Segur\nequations and two `unproper' discrete Ablowitz-Kaup-Newell-Segur equations are\nderived. The `proper' equations admit local reduction, while the `unproper'\nequations admit nonlocal reduction. By imposing the local and nonlocal complex\nreductions on the obtained discrete Ablowitz-Kaup-Newell-Segur equations, two\nlocal and nonlocal discrete complex modified Korteweg-de Vries equations are\nconstructed. For the obtained local and nonlocal discrete complex modified\nKorteweg-de Vries equations, soliton solutions and Jordan-block solutions are\npresented by solving the determining equation set. The dynamical behaviors of\n1-soliton solution are analyzed and illustrated. Continuum limits of the\nresulting local and nonlocal discrete complex modified Korteweg-de Vries\nequations are discussed.","PeriodicalId":501592,"journal":{"name":"arXiv - PHYS - Exactly Solvable and Integrable Systems","volume":"11 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Exactly Solvable and Integrable Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2404.14150","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Cauchy matrix approach for the discrete Ablowitz-Kaup-Newell-Segur equations is reconsidered, where two `proper' discrete Ablowitz-Kaup-Newell-Segur equations and two `unproper' discrete Ablowitz-Kaup-Newell-Segur equations are derived. The `proper' equations admit local reduction, while the `unproper' equations admit nonlocal reduction. By imposing the local and nonlocal complex reductions on the obtained discrete Ablowitz-Kaup-Newell-Segur equations, two local and nonlocal discrete complex modified Korteweg-de Vries equations are constructed. For the obtained local and nonlocal discrete complex modified Korteweg-de Vries equations, soliton solutions and Jordan-block solutions are presented by solving the determining equation set. The dynamical behaviors of 1-soliton solution are analyzed and illustrated. Continuum limits of the resulting local and nonlocal discrete complex modified Korteweg-de Vries equations are discussed.
局部和非局部离散复合修正 Korteweg-de Vries 方程的解和连续极限
重新考虑了离散 Ablowitz-Kaup-Newell-Segur 方程的 Cauchy 矩阵方法,得出了两个 "正确的 "离散 Ablowitz-Kaup-Newell-Segure 方程和两个 "不正确的 "离散 Ablowitz-Kaup-Newell-Segur 方程。正确 "方程允许局部还原,而 "不正确 "方程允许非局部还原。通过对所得到的离散 Ablowitz-Kaup-Newell-Segur 方程进行局部和非局部复分解,构建了两个局部和非局部离散复修正 Korteweg-de Vries 方程。对于所得到的局部和非局部离散复变修正 Korteweg-de Vries 方程,通过求解确定方程组给出了孤子解和约旦块解。分析并说明了1-孤子解的动力学行为。讨论了所得局部和非局部离散复变修正科特韦格-德弗里斯方程的连续极限。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信