{"title":"Electrically tunable correlated domain wall network in twisted bilayer graphene","authors":"Hao-Chien Wang and Chen-Hsuan Hsu","doi":"10.1088/2053-1583/ad3b11","DOIUrl":null,"url":null,"abstract":"We investigate the domain wall network in twisted bilayer graphene (TBG) under the influence of interlayer bias and screening effect from the layered structure. Starting from the continuum model, we analyze the low-energy domain wall modes within the moiré bilayer structure and obtain an analytic form representing charge density distributions of the two-dimensional structure. By computing the screened electron–electron interaction strengths both within and between the domain walls, we develop a bosonized model that describes the correlated domain wall network. We demonstrate that these interaction strengths can be modified through an applied interlayer bias, screening length and dielectric materials, and show how the model can be employed to investigate various properties of the domain wall network and its stability. We compute correlation functions both without and with phonons. Including electron–phonon coupling in the network, we establish phase diagrams from these correlation functions. These diagrams illustrate electrical tunability of the network between various phases, such as density wave states and superconductivity. Our findings reveal the domain wall network as a promising platform for the experimental manipulation of electron–electron interactions in low dimensions and the study of strongly correlated matter. We point out that our investigation not only enhances the understanding of domain wall modes in TBG but also has broader implications for the development of moiré devices.","PeriodicalId":6812,"journal":{"name":"2D Materials","volume":"4 1","pages":""},"PeriodicalIF":4.5000,"publicationDate":"2024-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2D Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1088/2053-1583/ad3b11","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
We investigate the domain wall network in twisted bilayer graphene (TBG) under the influence of interlayer bias and screening effect from the layered structure. Starting from the continuum model, we analyze the low-energy domain wall modes within the moiré bilayer structure and obtain an analytic form representing charge density distributions of the two-dimensional structure. By computing the screened electron–electron interaction strengths both within and between the domain walls, we develop a bosonized model that describes the correlated domain wall network. We demonstrate that these interaction strengths can be modified through an applied interlayer bias, screening length and dielectric materials, and show how the model can be employed to investigate various properties of the domain wall network and its stability. We compute correlation functions both without and with phonons. Including electron–phonon coupling in the network, we establish phase diagrams from these correlation functions. These diagrams illustrate electrical tunability of the network between various phases, such as density wave states and superconductivity. Our findings reveal the domain wall network as a promising platform for the experimental manipulation of electron–electron interactions in low dimensions and the study of strongly correlated matter. We point out that our investigation not only enhances the understanding of domain wall modes in TBG but also has broader implications for the development of moiré devices.
期刊介绍:
2D Materials is a multidisciplinary, electronic-only journal devoted to publishing fundamental and applied research of the highest quality and impact covering all aspects of graphene and related two-dimensional materials.