Exact Formula for Solving a Degenerate System of Quadratic Equations

Pub Date : 2024-04-22 DOI:10.1134/s0965542524030072
Yu. G. Evtushenko, A. A. Tret’yakov
{"title":"Exact Formula for Solving a Degenerate System of Quadratic Equations","authors":"Yu. G. Evtushenko, A. A. Tret’yakov","doi":"10.1134/s0965542524030072","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>The paper is devoted to the solution of a nonlinear system of equations <span>\\(F(x{{) = 0}_{n}}\\)</span>, where <span>\\(F\\)</span> is a quadratic mapping acting from <span>\\({{\\mathbb{R}}^{n}}\\)</span> to <span>\\({{\\mathbb{R}}^{n}}\\)</span>. The derivative <span>\\(F{\\kern 1pt} '\\)</span> is assumed to be degenerate at the solution point, which is a major characteristic property of nonlinearity of the mapping. Based on constructions of the <i>p</i>-regularity theory, a 2-factor method is proposed for solving the system of equations, which converges at a quadratic rate. Moreover, an exact formula is obtained for solving this quadratic system of equations in the case of a 2-regular mapping <span>\\(F(x)\\)</span>.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1134/s0965542524030072","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The paper is devoted to the solution of a nonlinear system of equations \(F(x{{) = 0}_{n}}\), where \(F\) is a quadratic mapping acting from \({{\mathbb{R}}^{n}}\) to \({{\mathbb{R}}^{n}}\). The derivative \(F{\kern 1pt} '\) is assumed to be degenerate at the solution point, which is a major characteristic property of nonlinearity of the mapping. Based on constructions of the p-regularity theory, a 2-factor method is proposed for solving the system of equations, which converges at a quadratic rate. Moreover, an exact formula is obtained for solving this quadratic system of equations in the case of a 2-regular mapping \(F(x)\).

分享
查看原文
求解一元二次方程系的精确公式
摘要 本文致力于非线性方程组 \(F(x{{) = 0}_{n}}\ 的求解,其中 \(F\) 是作用于 \({{\mathbb{R}}^{n}}\) 到 \({{\mathbb{R}}^{n}}\) 的二次映射。)假定导数 \(F{kern 1pt} '\) 在解点处是退化的,这是映射非线性的一个主要特征属性。基于 p-regularity 理论的构造,提出了一种求解方程组的 2 因子方法,该方法以二次方速率收敛。此外,在 2-regular 映射 \(F(x)\)的情况下,还得到了求解该二次方程组的精确公式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信