On the Construction of an Optimal Network of Observation Points when Solving Inverse Linear Problems of Gravimetry and Magnetometry

Pub Date : 2024-04-22 DOI:10.1134/s0965542524030151
I. E. Stepanova, D. V. Lukyanenko, I. I. Kolotov, A. V. Shchepetilov, A. G. Yagola, A. N. Levashov
{"title":"On the Construction of an Optimal Network of Observation Points when Solving Inverse Linear Problems of Gravimetry and Magnetometry","authors":"I. E. Stepanova, D. V. Lukyanenko, I. I. Kolotov, A. V. Shchepetilov, A. G. Yagola, A. N. Levashov","doi":"10.1134/s0965542524030151","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>Unique solvability of systems of linear algebraic equations is studied to which many inverse problems of geophysics are reduced as a result of discretization after applying the method of integral equations or integral representations. Examples of singular and nonsingular systems of various dimensions that arise when processing magnetometric and gravimetric data from experimental observations are discussed. Conclusions are drawn about methods for constructing an optimal network of experimental observation points.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1134/s0965542524030151","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Unique solvability of systems of linear algebraic equations is studied to which many inverse problems of geophysics are reduced as a result of discretization after applying the method of integral equations or integral representations. Examples of singular and nonsingular systems of various dimensions that arise when processing magnetometric and gravimetric data from experimental observations are discussed. Conclusions are drawn about methods for constructing an optimal network of experimental observation points.

Abstract Image

分享
查看原文
论在解决重力测量和磁力测量的反线性问题时构建最佳观测点网络
摘要 研究了线性代数方程组的独特可解性,在应用积分方程或积分表示方法后,许多地球物理反演问题因离散化而简化为线性代数方程组。讨论了在处理来自实验观测的磁力测量和重力测量数据时出现的各种维度的奇异和非奇异系统的例子。就构建最佳实验观测点网络的方法得出结论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信