Localizing the Initial Condition for Solutions of the Cauchy Problem for the Heat Equation

Pub Date : 2024-04-22 DOI:10.1134/s0965542524030096
A. N. Konenkov
{"title":"Localizing the Initial Condition for Solutions of the Cauchy Problem for the Heat Equation","authors":"A. N. Konenkov","doi":"10.1134/s0965542524030096","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>The Cauchy problem for the heat equation with zero right-hand side is considered. The initial function is assumed to belong to the space of tempered distributions. The problem of determining the support of the initial function from solution values at some fixed time <span>\\(T &gt; 0\\)</span> is studied. Necessary and sufficient conditions for the support to lie in a given convex compact set are obtained. These conditions are formulated in terms of the solution’s decay rate at infinity. A sharp constant in the exponential for the Landis–Oleinik conjecture on the nonexistence of fast decaying solutions is found.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1134/s0965542524030096","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The Cauchy problem for the heat equation with zero right-hand side is considered. The initial function is assumed to belong to the space of tempered distributions. The problem of determining the support of the initial function from solution values at some fixed time \(T > 0\) is studied. Necessary and sufficient conditions for the support to lie in a given convex compact set are obtained. These conditions are formulated in terms of the solution’s decay rate at infinity. A sharp constant in the exponential for the Landis–Oleinik conjecture on the nonexistence of fast decaying solutions is found.

分享
查看原文
热方程考希问题解的初始条件本地化
摘要 研究了右边为零的热方程的 Cauchy 问题。假定初始函数属于调和分布空间。研究了从某个固定时间 \(T >0\)的解值确定初始函数支持的问题。得到了支撑位于给定凸紧凑集的必要条件和充分条件。这些条件是根据解在无穷远处的衰减率提出的。为关于快速衰减解不存在的 Landis-Oleinik 猜想找到了指数中的一个尖锐常数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信