Estimation of Elbow Joint Movement Using ANN-Based Softmax Classifier

Abdullah Y. Al-Maliki, K. Iqbal, G. White
{"title":"Estimation of Elbow Joint Movement Using ANN-Based Softmax Classifier","authors":"Abdullah Y. Al-Maliki, K. Iqbal, G. White","doi":"10.55708/js0304001","DOIUrl":null,"url":null,"abstract":": Estimating the natural voluntary movement of human joints in its entirety is a challenging problem especially when high accuracy is desired. In this paper, we build a modular estimator to estimate the elbow joint motion including angular displacement and direction. Being modular, this estimator can be scaled for application to other joints. We collected surface Electromyographic (sEMG) signals and motion capture data from healthy participants while performing elbow flexion and extension in different arm positions and at different effort levels. We preprocessed the sEMG signals, extracted features array, and used it to train an ANN-based Softmax classifier to estimate the angular displacement and movement direction. When compared against the motion cap-ture data, the classifier achieved estimation accuracy ranging from 80% to 90% with a resolution of 5°, which translates into Pear-son Correlation Coefficient (PCC) ranging from 0.91 to 0.95. Such high PCC values in mimicking the voluntary movement of the upper limb may help toward building intuitive prostheses, exoskeletons, remote-controlled robotic arms, and other Human Machine Interface (HMI) applications.","PeriodicalId":484451,"journal":{"name":"Journal of Engineering Research and Sciences","volume":"47 9","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Engineering Research and Sciences","FirstCategoryId":"0","ListUrlMain":"https://doi.org/10.55708/js0304001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

: Estimating the natural voluntary movement of human joints in its entirety is a challenging problem especially when high accuracy is desired. In this paper, we build a modular estimator to estimate the elbow joint motion including angular displacement and direction. Being modular, this estimator can be scaled for application to other joints. We collected surface Electromyographic (sEMG) signals and motion capture data from healthy participants while performing elbow flexion and extension in different arm positions and at different effort levels. We preprocessed the sEMG signals, extracted features array, and used it to train an ANN-based Softmax classifier to estimate the angular displacement and movement direction. When compared against the motion cap-ture data, the classifier achieved estimation accuracy ranging from 80% to 90% with a resolution of 5°, which translates into Pear-son Correlation Coefficient (PCC) ranging from 0.91 to 0.95. Such high PCC values in mimicking the voluntary movement of the upper limb may help toward building intuitive prostheses, exoskeletons, remote-controlled robotic arms, and other Human Machine Interface (HMI) applications.
使用基于 ANN 的 Softmax 分类器估算肘关节运动
:全面估计人体关节的自然自主运动是一个具有挑战性的问题,尤其是在需要高精度的情况下。在本文中,我们建立了一个模块化估算器,用于估算包括角位移和方向在内的肘关节运动。由于是模块化的,该估算器可以按比例扩展,以应用于其他关节。我们收集了健康参与者在不同手臂位置和不同力度下进行肘关节屈伸运动时的表面肌电图(sEMG)信号和运动捕捉数据。我们对肌电信号进行了预处理,提取了特征阵列,并用它来训练基于 ANN 的 Softmax 分类器,以估计角位移和运动方向。在与运动捕捉数据进行比较时,分类器在分辨率为 5° 的情况下达到了 80% 至 90% 的估计准确率,即梨形相关系数 (Pear-son Correlation Coefficient, PCC) 为 0.91 至 0.95。在模仿上肢自主运动时,如此高的 PCC 值可能有助于构建直观的假肢、外骨骼、遥控机械臂和其他人机界面 (HMI) 应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信