{"title":"Effects of the hydrologic process and geochemistry on dissolved carbon in shallow groundwater surrounding Qinghai Lake","authors":"Dongsheng Li , Buli Cui , Yunduo Zhao","doi":"10.1016/j.jglr.2024.102349","DOIUrl":null,"url":null,"abstract":"<div><p>A high concentration of dissolved carbon in groundwater increases drinking water health risks and carbon transport. Understanding the comprehensive impact of hydrologic processes and geochemistry on dissolved carbon in shallow groundwater also is a fundamental prerequisite for estimating the carbon budget of lakes in the Tibetan Plateau. This study investigated the spatial–temporal characteristics of the hydrologic process, geochemistry and dissolved carbon in shallow groundwater by the stable isotope tracer method, Piper diagram and Boomerang envelope model. The driving factors of dissolved carbon in shallow groundwater were explored by correlation analysis and redundancy analysis. The results showed low dissolved inorganic carbon (DIC) concentrations and high dissolved organic carbon (DOC) concentrations during the thawing period and rainy season and high DIC concentrations and low DOC concentrations during the freezing period. The seepage velocity, soil carbon dioxide dissolution and gypsum dissolution were the main factors influencing DIC concentrations during the thawing period. The mineralization and decomposition of DOC and dissolution of carbonate rocks were the main factors influencing DIC concentrations during the freezing period. The concentrations of DOC were mainly controlled by the adsorption of Ca<sup>2+</sup> and Mg<sup>2+</sup>, microbial activity and pollutants produced by human activities. Our results are useful for ecological sustainable development, human health, and research on the carbon transport in groundwater in the Tibetan Plateau.</p></div>","PeriodicalId":54818,"journal":{"name":"Journal of Great Lakes Research","volume":"50 3","pages":"Article 102349"},"PeriodicalIF":2.4000,"publicationDate":"2024-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Great Lakes Research","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0380133024000881","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
A high concentration of dissolved carbon in groundwater increases drinking water health risks and carbon transport. Understanding the comprehensive impact of hydrologic processes and geochemistry on dissolved carbon in shallow groundwater also is a fundamental prerequisite for estimating the carbon budget of lakes in the Tibetan Plateau. This study investigated the spatial–temporal characteristics of the hydrologic process, geochemistry and dissolved carbon in shallow groundwater by the stable isotope tracer method, Piper diagram and Boomerang envelope model. The driving factors of dissolved carbon in shallow groundwater were explored by correlation analysis and redundancy analysis. The results showed low dissolved inorganic carbon (DIC) concentrations and high dissolved organic carbon (DOC) concentrations during the thawing period and rainy season and high DIC concentrations and low DOC concentrations during the freezing period. The seepage velocity, soil carbon dioxide dissolution and gypsum dissolution were the main factors influencing DIC concentrations during the thawing period. The mineralization and decomposition of DOC and dissolution of carbonate rocks were the main factors influencing DIC concentrations during the freezing period. The concentrations of DOC were mainly controlled by the adsorption of Ca2+ and Mg2+, microbial activity and pollutants produced by human activities. Our results are useful for ecological sustainable development, human health, and research on the carbon transport in groundwater in the Tibetan Plateau.
期刊介绍:
Published six times per year, the Journal of Great Lakes Research is multidisciplinary in its coverage, publishing manuscripts on a wide range of theoretical and applied topics in the natural science fields of biology, chemistry, physics, geology, as well as social sciences of the large lakes of the world and their watersheds. Large lakes generally are considered as those lakes which have a mean surface area of >500 km2 (see Herdendorf, C.E. 1982. Large lakes of the world. J. Great Lakes Res. 8:379-412, for examples), although smaller lakes may be considered, especially if they are very deep. We also welcome contributions on saline lakes and research on estuarine waters where the results have application to large lakes.