Newton Geometric Iterative Method for B-Spline Curve and Surface Approximation

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Qiuyang Song, Pengbo Bo
{"title":"Newton Geometric Iterative Method for B-Spline Curve and Surface Approximation","authors":"Qiuyang Song,&nbsp;Pengbo Bo","doi":"10.1016/j.cad.2024.103716","DOIUrl":null,"url":null,"abstract":"<div><p>We introduce a progressive and iterative method for B-spline curve and surface approximation, incorporating parameter correction based on the Newton iterative method. While parameter corrections have been used in existing Geometric Approximation (GA) methods to enhance approximation quality, they suffer from low computational efficiency. Our approach unifies control point updates and parameter corrections in a progressive and iterative procedure, employing a one-step strategy for parameter correction. We provide a theoretical proof of convergence for the algorithm, demonstrating its superior computational efficiency compared to current GA methods. Furthermore, the provided convergence proof offers a methodology for proving the convergence of existing GA methods with location parameter correction.</p></div>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0010448524000435","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

We introduce a progressive and iterative method for B-spline curve and surface approximation, incorporating parameter correction based on the Newton iterative method. While parameter corrections have been used in existing Geometric Approximation (GA) methods to enhance approximation quality, they suffer from low computational efficiency. Our approach unifies control point updates and parameter corrections in a progressive and iterative procedure, employing a one-step strategy for parameter correction. We provide a theoretical proof of convergence for the algorithm, demonstrating its superior computational efficiency compared to current GA methods. Furthermore, the provided convergence proof offers a methodology for proving the convergence of existing GA methods with location parameter correction.

用于 B 样条曲线和曲面逼近的牛顿几何迭代法
我们介绍了一种基于牛顿迭代法的渐进迭代 B-样条曲线和曲面逼近方法,其中包含参数修正。虽然现有的几何逼近(GA)方法中使用了参数修正来提高逼近质量,但它们的计算效率较低。我们的方法将控制点更新和参数修正统一在一个渐进的迭代过程中,采用一步参数修正策略。我们提供了该算法的理论收敛性证明,证明其计算效率优于当前的 GA 方法。此外,所提供的收敛性证明还为证明具有位置参数修正功能的现有 GA 方法的收敛性提供了一种方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信