Review and meta-analysis of electron temperatures from high-intensity laser–solid interactions

D. Rusby, A. J. Kemp, S. Wilks, K. G. Miller, M. Sherlock, H. Chen, R. Simpson, D. Mariscal, K. Swanson, B. Djordjević, A. J. Link, G. J. Williams, A. J. Mackinnon
{"title":"Review and meta-analysis of electron temperatures from high-intensity laser–solid interactions","authors":"D. Rusby, A. J. Kemp, S. Wilks, K. G. Miller, M. Sherlock, H. Chen, R. Simpson, D. Mariscal, K. Swanson, B. Djordjević, A. J. Link, G. J. Williams, A. J. Mackinnon","doi":"10.1063/5.0197279","DOIUrl":null,"url":null,"abstract":"The accelerated electron spectrum from high-intensity laser–solid interaction is often conveniently described using a Boltzmann distribution, whose temperature is known within the field as the hot-electron temperature. The importance of the electron temperature is highlighted by the sheer number of experimental and simulation studies on the subject over the past three decades. Recently, multi-kJ, multi-ps pulses have yielded electron spectra with temperatures far beyond the expected ponderomotive result. Expressions that predict the electron temperature considering laser parameters beyond intensity and wavelength have been developed, albeit using small datasets. In this review, we present what is, to the best of our knowledge, the largest dataset of electron temperatures gathered from experimental measurements and particle-in-cell simulations. This dataset allows us to compare existing analytical and empirical hot-electron temperature scaling models over a wide parameter range. We also develop new scaling models that incorporate the laser pulse duration of the laser and the plasma scale length. Three models that include pulse-duration and scale length dependence are especially successful at predicting both simulated and experimental data. The dataset will soon be made publicly available to encourage further investigation.","PeriodicalId":510396,"journal":{"name":"Physics of Plasmas","volume":"67 40","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics of Plasmas","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1063/5.0197279","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The accelerated electron spectrum from high-intensity laser–solid interaction is often conveniently described using a Boltzmann distribution, whose temperature is known within the field as the hot-electron temperature. The importance of the electron temperature is highlighted by the sheer number of experimental and simulation studies on the subject over the past three decades. Recently, multi-kJ, multi-ps pulses have yielded electron spectra with temperatures far beyond the expected ponderomotive result. Expressions that predict the electron temperature considering laser parameters beyond intensity and wavelength have been developed, albeit using small datasets. In this review, we present what is, to the best of our knowledge, the largest dataset of electron temperatures gathered from experimental measurements and particle-in-cell simulations. This dataset allows us to compare existing analytical and empirical hot-electron temperature scaling models over a wide parameter range. We also develop new scaling models that incorporate the laser pulse duration of the laser and the plasma scale length. Three models that include pulse-duration and scale length dependence are especially successful at predicting both simulated and experimental data. The dataset will soon be made publicly available to encourage further investigation.
高强度激光与固体相互作用产生的电子温度回顾与荟萃分析
高强度激光与固体相互作用产生的加速电子能谱通常使用波尔兹曼分布进行描述,其温度在该领域被称为热电子温度。在过去的三十年中,有关这一主题的实验和模拟研究数量之多,凸显了电子温度的重要性。最近,多kJ、多ps脉冲产生的电子能谱温度远远超出了预期的思脉冲结果。尽管使用的数据集较小,但考虑到激光强度和波长之外的参数,预测电子温度的表达式已经被开发出来。在这篇综述中,我们介绍了据我们所知从实验测量和粒子池模拟中收集到的最大电子温度数据集。通过这个数据集,我们可以在很宽的参数范围内比较现有的分析和经验热电子温度比例模型。我们还开发了包含激光脉冲持续时间和等离子体尺度长度的新比例模型。包含脉冲持续时间和尺度长度依赖性的三个模型在预测模拟和实验数据方面都特别成功。数据集不久将公开发布,以鼓励进一步的研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信