Improved 30‐m Evapotranspiration Estimates Over 145 Eddy Covariance Sites in the Contiguous United States: The Role of ECOSTRESS, Harmonized Landsat Sentinel‐2 Imagery, Climate Reanalysis, and Deep Neural Network Postprocessing

Taufiq Rashid, D. Tian
{"title":"Improved 30‐m Evapotranspiration Estimates Over 145 Eddy Covariance Sites in the Contiguous United States: The Role of ECOSTRESS, Harmonized Landsat Sentinel‐2 Imagery, Climate Reanalysis, and Deep Neural Network Postprocessing","authors":"Taufiq Rashid, D. Tian","doi":"10.1029/2023wr036313","DOIUrl":null,"url":null,"abstract":"This study developed and evaluated 30‐m daily evapotranspiration (ET) estimates using the Priestley‐Taylor Jet Propulsion Laboratory (PT‐JPL) model with ECOSTRESS, Moderate MODIS, harmonized Landsat Sentinel‐2 (HLS) imagery, ERA5‐Land reanalysis, and eddy covariance measurements. The new daily 30‐m ET showed significantly improved performance (overall, r = 0.8, RMSE = 1.736, KGE = 0.466) at 145 EC sites over contiguous United States compared to the current 70‐m ECOSTRESS ET (overall, r = 0.485, RMSE = 4.696, KGE = −0.841). A deep neural network postprocessing model trained with ET measurements from EC sites further improved the performance on test sites that were not used for model training (overall, r = 0.842, RMSE = 0.88, KGE = 0.792). The 30‐m ET estimation biases were significantly related to the biases in the upwelling longwave (RUL) and downwelling shortwave radiation (RDS) inputs, with ET estimates driven by MODIS radiation showing higher biases compared to those driven by ERA5‐Land radiation. The error diagnosis using random forest indicates that ET biases tend to be larger under higher ET estimates, and RUL and RDS were the primary contributors to the high bias at the higher ET ranges, with partial dependence plots revealing that the estimation biases tend to be higher under more humid environment, denser vegetation covers, and high net radiation conditions. In conclusion, higher spatial resolution satellite imagery of vegetation characteristics and higher temporal resolution radiation data, combined with continent‐wide EC measurements and deep learning, provided substantial added value for improving ET estimations at the field scale (30‐m).","PeriodicalId":507642,"journal":{"name":"Water Resources Research","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water Resources Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1029/2023wr036313","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This study developed and evaluated 30‐m daily evapotranspiration (ET) estimates using the Priestley‐Taylor Jet Propulsion Laboratory (PT‐JPL) model with ECOSTRESS, Moderate MODIS, harmonized Landsat Sentinel‐2 (HLS) imagery, ERA5‐Land reanalysis, and eddy covariance measurements. The new daily 30‐m ET showed significantly improved performance (overall, r = 0.8, RMSE = 1.736, KGE = 0.466) at 145 EC sites over contiguous United States compared to the current 70‐m ECOSTRESS ET (overall, r = 0.485, RMSE = 4.696, KGE = −0.841). A deep neural network postprocessing model trained with ET measurements from EC sites further improved the performance on test sites that were not used for model training (overall, r = 0.842, RMSE = 0.88, KGE = 0.792). The 30‐m ET estimation biases were significantly related to the biases in the upwelling longwave (RUL) and downwelling shortwave radiation (RDS) inputs, with ET estimates driven by MODIS radiation showing higher biases compared to those driven by ERA5‐Land radiation. The error diagnosis using random forest indicates that ET biases tend to be larger under higher ET estimates, and RUL and RDS were the primary contributors to the high bias at the higher ET ranges, with partial dependence plots revealing that the estimation biases tend to be higher under more humid environment, denser vegetation covers, and high net radiation conditions. In conclusion, higher spatial resolution satellite imagery of vegetation characteristics and higher temporal resolution radiation data, combined with continent‐wide EC measurements and deep learning, provided substantial added value for improving ET estimations at the field scale (30‐m).
美国毗连地区 145 个涡度协方差站点 30 米蒸散量的改进估算:ECOSTRESS、统一陆地卫星哨兵-2 图像、气候再分析和深度神经网络后处理的作用
本研究利用普利斯特里-泰勒喷气推进实验室(PT-JPL)模型,结合 ECOSTRESS、中分辨率 MODIS、协调大地遥感卫星哨兵-2(HLS)图像、ERA5-陆地再分析和涡度协方差测量数据,开发并评估了 30 米日蒸散量(ET)估算值。与当前的 70 米 ECOSTRESS 蒸散发相比,新的每日 30 米蒸散发在美国毗连地区 145 个欧共体站点的性能有了显著提高(总体而言,r = 0.8,RMSE = 1.736,KGE = 0.466)(总体而言,r = 0.485,RMSE = 4.696,KGE = -0.841)。利用欧洲共同体站点的蒸散发测量数据训练的深度神经网络后处理模型进一步提高了未用于模型训练的测试站点的性能(总体,r = 0.842,RMSE = 0.88,KGE = 0.792)。30 m 蒸散发估算偏差与上涌长波辐射(RUL)和下沉短波辐射(RDS)输入的偏差有显著关系,MODIS 辐射驱动的蒸散发估算与ERA5-Land 辐射驱动的估算相比偏差更大。利用随机森林进行的误差分析表明,在较高的蒸散发估算值下,蒸散发偏差往往较大,而 RUL 和 RDS 是造成较高蒸散发范围内偏差较大的主要原因,部分依存图显示,在较潮湿的环境、较密集的植被覆盖和高净辐射条件下,估算偏差往往较大。总之,较高空间分辨率的植被特征卫星图像和较高时间分辨率的辐射数据,结合全大陆范围的欧共体测量和深度学习,为改进野外尺度(30 米)的蒸散发估算提供了巨大的附加值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信