{"title":"Therapeutic Effect of Proteinase-Activated Receptor-1 Antagonist on Colitis-Associated Carcinogenesis","authors":"Xiaodong Li , Lin-Hai Kurahara , Zhixin Zhao , Feiyan Zhao , Ryo Ishikawa , Kiyomi Ohmichi , Gaopeng Li , Tetsuo Yamashita , Takeshi Hashimoto , Mayumi Hirano , Zhihong Sun , Katsuya Hirano","doi":"10.1016/j.jcmgh.2024.04.001","DOIUrl":null,"url":null,"abstract":"<div><h3>Background & Aims</h3><p>Inflammatory bowel disease is associated with carcinogenesis, which limits the prognosis of the patients. The local expression of proteinases and proteinase-activated receptor 1 (PAR<sub>1</sub>) increases in inflammatory bowel disease. The present study investigated the therapeutic effects of PAR<sub>1</sub> antagonism on colitis-associated carcinogenesis.</p></div><div><h3>Methods</h3><p>A colitis-associated carcinogenesis model was prepared in mice by treatment with azoxymethane (AOM) and dextran sulfate sodium (DSS). PAR<sub>1</sub> antagonist E5555 was administered in long- and short-term protocol, starting on the day of AOM injection and 1 week after completing AOM/DSS treatment, respectively. The fecal samples were collected for metagenome analysis of gut microbiota. The intestinal myofibroblasts of the Crohn’s disease patients were used to elucidate underlying cellular mechanisms. Caco-2 cells were used to investigate a possible source of PAR<sub>1</sub> agonist proteinases.</p></div><div><h3>Results</h3><p>AOM/DSS model showed weight loss, diarrhea, tumor development, inflammation, fibrosis, and increased production of inflammatory cytokines. The β-diversity, but not α-diversity, of microbiota significantly differed between AOM/DSS and control mice. E5555 alleviated these pathological changes and altered the microbiota β-diversity in AOM/DSS mice. The thrombin expression was up-regulated in tumor and non-tumor areas, whereas PAR<sub>1</sub> mRNA expression was higher in tumor areas compared with non-tumor areas. E5555 inhibited thrombin-triggered elevation of cytosolic Ca<sup>2+</sup> concentration and ERK1/2 phosphorylation, as well as IL6-induced signal transducer and activator of transcription 3 (STAT3) phosphorylation in intestinal myofibroblasts. Caco-2 cell-conditioned medium contained immunoreactive thrombin, which cleaved the recombinant protein containing the extracellular domain of PAR<sub>1</sub> at the thrombin cleavage site.</p></div><div><h3>Conclusions</h3><p>PAR<sub>1</sub> antagonism is proposed to be a novel therapeutic strategy for treatment of inflammatory bowel disease and its associated carcinogenesis.</p></div>","PeriodicalId":55974,"journal":{"name":"Cellular and Molecular Gastroenterology and Hepatology","volume":"18 1","pages":"Pages 105-131"},"PeriodicalIF":7.1000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2352345X24000717/pdfft?md5=8b994d1d5ae16166b21f33644cff1753&pid=1-s2.0-S2352345X24000717-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cellular and Molecular Gastroenterology and Hepatology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352345X24000717","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GASTROENTEROLOGY & HEPATOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background & Aims
Inflammatory bowel disease is associated with carcinogenesis, which limits the prognosis of the patients. The local expression of proteinases and proteinase-activated receptor 1 (PAR1) increases in inflammatory bowel disease. The present study investigated the therapeutic effects of PAR1 antagonism on colitis-associated carcinogenesis.
Methods
A colitis-associated carcinogenesis model was prepared in mice by treatment with azoxymethane (AOM) and dextran sulfate sodium (DSS). PAR1 antagonist E5555 was administered in long- and short-term protocol, starting on the day of AOM injection and 1 week after completing AOM/DSS treatment, respectively. The fecal samples were collected for metagenome analysis of gut microbiota. The intestinal myofibroblasts of the Crohn’s disease patients were used to elucidate underlying cellular mechanisms. Caco-2 cells were used to investigate a possible source of PAR1 agonist proteinases.
Results
AOM/DSS model showed weight loss, diarrhea, tumor development, inflammation, fibrosis, and increased production of inflammatory cytokines. The β-diversity, but not α-diversity, of microbiota significantly differed between AOM/DSS and control mice. E5555 alleviated these pathological changes and altered the microbiota β-diversity in AOM/DSS mice. The thrombin expression was up-regulated in tumor and non-tumor areas, whereas PAR1 mRNA expression was higher in tumor areas compared with non-tumor areas. E5555 inhibited thrombin-triggered elevation of cytosolic Ca2+ concentration and ERK1/2 phosphorylation, as well as IL6-induced signal transducer and activator of transcription 3 (STAT3) phosphorylation in intestinal myofibroblasts. Caco-2 cell-conditioned medium contained immunoreactive thrombin, which cleaved the recombinant protein containing the extracellular domain of PAR1 at the thrombin cleavage site.
Conclusions
PAR1 antagonism is proposed to be a novel therapeutic strategy for treatment of inflammatory bowel disease and its associated carcinogenesis.
期刊介绍:
"Cell and Molecular Gastroenterology and Hepatology (CMGH)" is a journal dedicated to advancing the understanding of digestive biology through impactful research that spans the spectrum of normal gastrointestinal, hepatic, and pancreatic functions, as well as their pathologies. The journal's mission is to publish high-quality, hypothesis-driven studies that offer mechanistic novelty and are methodologically robust, covering a wide range of themes in gastroenterology, hepatology, and pancreatology.
CMGH reports on the latest scientific advances in cell biology, immunology, physiology, microbiology, genetics, and neurobiology related to gastrointestinal, hepatobiliary, and pancreatic health and disease. The research published in CMGH is designed to address significant questions in the field, utilizing a variety of experimental approaches, including in vitro models, patient-derived tissues or cells, and animal models. This multifaceted approach enables the journal to contribute to both fundamental discoveries and their translation into clinical applications, ultimately aiming to improve patient care and treatment outcomes in digestive health.