Turbulent Flow Prediction-Simulation: Strained Flow with Initial Isotropic Condition Using a GRU Model Trained by an Experimental Lagrangian Framework, with Emphasis on Hyperparameter Optimization

IF 1.8 Q3 MECHANICS
Fluids Pub Date : 2024-04-01 DOI:10.3390/fluids9040084
R. Hassanian, Marcel Aach, A. Lintermann, Á. Helgadóttir, M. Riedel
{"title":"Turbulent Flow Prediction-Simulation: Strained Flow with Initial Isotropic Condition Using a GRU Model Trained by an Experimental Lagrangian Framework, with Emphasis on Hyperparameter Optimization","authors":"R. Hassanian, Marcel Aach, A. Lintermann, Á. Helgadóttir, M. Riedel","doi":"10.3390/fluids9040084","DOIUrl":null,"url":null,"abstract":"This study presents a novel approach to using a gated recurrent unit (GRU) model, a deep neural network, to predict turbulent flows in a Lagrangian framework. The emerging velocity field is predicted based on experimental data from a strained turbulent flow, which was initially a nearly homogeneous isotropic turbulent flow at the measurement area. The distorted turbulent flow has a Taylor microscale Reynolds number in the range of 100 < Reλ < 152 before creating the strain and is strained with a mean strain rate of 4 s−1 in the Y direction. The measurement is conducted in the presence of gravity consequent to the actual condition, an effect that is usually neglected and has not been investigated in most numerical studies. A Lagrangian particle tracking technique is used to extract the flow characterizations. It is used to assess the capability of the GRU model to forecast the unknown turbulent flow pattern affected by distortion and gravity using spatiotemporal input data. Using the flow track’s location (spatial) and time (temporal) highlights the model’s superiority. The suggested approach provides the possibility to predict the emerging pattern of the strained turbulent flow properties observed in many natural and artificial phenomena. In order to optimize the consumed computing, hyperparameter optimization (HPO) is used to improve the GRU model performance by 14–20%. Model training and inference run on the high-performance computing (HPC) JUWELS-BOOSTER and DEEP-DAM systems at the Jülich Supercomputing Centre, and the code speed-up on these machines is measured. The proposed model produces accurate predictions for turbulent flows in the Lagrangian view with a mean absolute error (MAE) of 0.001 and an R2 score of 0.993.","PeriodicalId":12397,"journal":{"name":"Fluids","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fluids","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/fluids9040084","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

Abstract

This study presents a novel approach to using a gated recurrent unit (GRU) model, a deep neural network, to predict turbulent flows in a Lagrangian framework. The emerging velocity field is predicted based on experimental data from a strained turbulent flow, which was initially a nearly homogeneous isotropic turbulent flow at the measurement area. The distorted turbulent flow has a Taylor microscale Reynolds number in the range of 100 < Reλ < 152 before creating the strain and is strained with a mean strain rate of 4 s−1 in the Y direction. The measurement is conducted in the presence of gravity consequent to the actual condition, an effect that is usually neglected and has not been investigated in most numerical studies. A Lagrangian particle tracking technique is used to extract the flow characterizations. It is used to assess the capability of the GRU model to forecast the unknown turbulent flow pattern affected by distortion and gravity using spatiotemporal input data. Using the flow track’s location (spatial) and time (temporal) highlights the model’s superiority. The suggested approach provides the possibility to predict the emerging pattern of the strained turbulent flow properties observed in many natural and artificial phenomena. In order to optimize the consumed computing, hyperparameter optimization (HPO) is used to improve the GRU model performance by 14–20%. Model training and inference run on the high-performance computing (HPC) JUWELS-BOOSTER and DEEP-DAM systems at the Jülich Supercomputing Centre, and the code speed-up on these machines is measured. The proposed model produces accurate predictions for turbulent flows in the Lagrangian view with a mean absolute error (MAE) of 0.001 and an R2 score of 0.993.
湍流预测与模拟:使用由实验拉格朗日框架训练的 GRU 模型模拟初始各向同性条件下的应变流,重点是超参数优化
本研究提出了一种新方法,即使用门控递归单元(GRU)模型(一种深度神经网络)在拉格朗日框架下预测湍流。新出现的速度场是根据一个扭曲湍流的实验数据预测的,该湍流最初在测量区域是一个近乎均匀的各向同性湍流。在产生应变之前,扭曲湍流的泰勒微尺度雷诺数范围为 100 < Reλ < 152,Y 方向的平均应变速率为 4 s-1。测量是在实际条件下存在重力的情况下进行的,这种影响通常被忽视,大多数数值研究也未对其进行调查。拉格朗日粒子跟踪技术用于提取流动特征。它用于评估 GRU 模型利用时空输入数据预测受扭曲和重力影响的未知湍流模式的能力。利用流动轨迹的位置(空间)和时间(时间)可以突出模型的优越性。建议的方法为预测在许多自然和人工现象中观察到的应变湍流特性的新模式提供了可能性。为了优化所消耗的计算,采用了超参数优化(HPO)技术,将 GRU 模型的性能提高了 14-20%。模型的训练和推理在尤里希超级计算中心的高性能计算(HPC)JUWELS-BOOSTER 和 DEEP-DAM 系统上运行,并对这些机器上的代码加速进行了测量。所提出的模型在拉格朗日视角下对湍流进行了精确预测,平均绝对误差 (MAE) 为 0.001,R2 为 0.993。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Fluids
Fluids Engineering-Mechanical Engineering
CiteScore
3.40
自引率
10.50%
发文量
326
审稿时长
12 weeks
文献相关原料
公司名称 产品信息 采购帮参考价格
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信