Siwei Wang MD, PhD , Fanchen Meng MD , Peng Chen MD , Yang Lv MSc , Min Wu PhD , Haimeng Tang PhD , Hua Bao PhD , Xue Wu PhD , Yang Shao PhD , Jie Wang PhD , Juncheng Dai PhD, MPH , Lin Xu MD, PhD , Xiaoxiao Wang PhD, MPH , Rong Yin MD, PhD
{"title":"Cell-free DNA assay for malignancy classification of high-risk lung nodules","authors":"Siwei Wang MD, PhD , Fanchen Meng MD , Peng Chen MD , Yang Lv MSc , Min Wu PhD , Haimeng Tang PhD , Hua Bao PhD , Xue Wu PhD , Yang Shao PhD , Jie Wang PhD , Juncheng Dai PhD, MPH , Lin Xu MD, PhD , Xiaoxiao Wang PhD, MPH , Rong Yin MD, PhD","doi":"10.1016/j.jtcvs.2024.04.026","DOIUrl":null,"url":null,"abstract":"<div><h3>Objective</h3><div><span>Although low-dose computed tomography has been proven effective to reduce lung cancer–specific mortality, a considerable proportion of surgically resected high-risk </span>lung nodules<span><span> were still confirmed pathologically benign. There is an unmet need of a novel method for malignancy classification in </span>lung nodules.</span></div></div><div><h3>Methods</h3><div>We recruited 307 patients with high-risk lung nodules who underwent curative surgery, and 247 and 60 cases were pathologically confirmed malignant and benign lung lesions<span>, respectively. Plasma samples from each patient were collected before surgery and performed low-depth (5×) whole-genome sequencing. We extracted cell-free DNA characteristics and determined radiomic features. We built models to classify the malignancy using our data and further validated models with 2 independent lung nodule cohorts.</span></div></div><div><h3>Results</h3><div>Our models using one type of profile were able to distinguish lung cancer and benign lung nodules at an area under the curve metrics of 0.69 to 0.91 in the study cohort<span>. Integrating all the 5 base models using cell-free DNA profiles, the cell-free DNA–based ensemble model achieved an area under the curve of 0.95 (95% CI, 0.92-0.97) in the study cohort and 0.98 (95% CI, 0.96-1.00) in the validation cohort. At a specificity of 95.0%, the sensitivity reached 80.0% in the study cohort. With the same threshold, the specificity and sensitivity had similar performances in both validation cohorts. Furthermore, the performance of area under the curve reached 0.97 in both the study and validation cohorts when considering the radiomic profile.</span></div></div><div><h3>Conclusions</h3><div>The cell-free DNA profiles-based method is an efficient noninvasive tool to distinguish malignancies and high-risk but pathologically benign lung nodules.</div></div>","PeriodicalId":49975,"journal":{"name":"Journal of Thoracic and Cardiovascular Surgery","volume":"168 5","pages":"Pages e140-e175"},"PeriodicalIF":4.9000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Thoracic and Cardiovascular Surgery","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022522324003702","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Objective
Although low-dose computed tomography has been proven effective to reduce lung cancer–specific mortality, a considerable proportion of surgically resected high-risk lung nodules were still confirmed pathologically benign. There is an unmet need of a novel method for malignancy classification in lung nodules.
Methods
We recruited 307 patients with high-risk lung nodules who underwent curative surgery, and 247 and 60 cases were pathologically confirmed malignant and benign lung lesions, respectively. Plasma samples from each patient were collected before surgery and performed low-depth (5×) whole-genome sequencing. We extracted cell-free DNA characteristics and determined radiomic features. We built models to classify the malignancy using our data and further validated models with 2 independent lung nodule cohorts.
Results
Our models using one type of profile were able to distinguish lung cancer and benign lung nodules at an area under the curve metrics of 0.69 to 0.91 in the study cohort. Integrating all the 5 base models using cell-free DNA profiles, the cell-free DNA–based ensemble model achieved an area under the curve of 0.95 (95% CI, 0.92-0.97) in the study cohort and 0.98 (95% CI, 0.96-1.00) in the validation cohort. At a specificity of 95.0%, the sensitivity reached 80.0% in the study cohort. With the same threshold, the specificity and sensitivity had similar performances in both validation cohorts. Furthermore, the performance of area under the curve reached 0.97 in both the study and validation cohorts when considering the radiomic profile.
Conclusions
The cell-free DNA profiles-based method is an efficient noninvasive tool to distinguish malignancies and high-risk but pathologically benign lung nodules.
期刊介绍:
The Journal of Thoracic and Cardiovascular Surgery presents original, peer-reviewed articles on diseases of the heart, great vessels, lungs and thorax with emphasis on surgical interventions. An official publication of The American Association for Thoracic Surgery and The Western Thoracic Surgical Association, the Journal focuses on techniques and developments in acquired cardiac surgery, congenital cardiac repair, thoracic procedures, heart and lung transplantation, mechanical circulatory support and other procedures.