RELATIONS BETWEEN ARITHMETIC-GEOMETRIC INDEX AND GEOMETRIC-ARITHMETIC INDEX

Pub Date : 2024-04-01 DOI:10.59277/mrar.2024.26.76.1.17
K. Das, Tomas Vetrik, MO YONG-CHEOL
{"title":"RELATIONS BETWEEN ARITHMETIC-GEOMETRIC INDEX AND\nGEOMETRIC-ARITHMETIC INDEX","authors":"K. Das, Tomas Vetrik, MO YONG-CHEOL","doi":"10.59277/mrar.2024.26.76.1.17","DOIUrl":null,"url":null,"abstract":"The arithmetic-geometric index AG(G) and the geometric-arithmetic index\nGA(G) of a graph G are defined as AG(G) = P uv∈E(G) dG(u)+dG(v)\n2\n√\ndG(u)dG(v)\nand\nGA(G) =\nP\nuv∈E(G)\n2\n√\ndG(u)dG(v)\ndG(u)+dG(v) , where E(G) is the edge set of G, and dG(u)\nand dG(v) are the degrees of vertices u and v, respectively. We study relations\nbetween AG(G) and GA(G) for graphs G of given size, minimum degree and\nmaximum degree. We present lower and upper bounds on AG(G) + GA(G),\nAG(G) − GA(G) and AG(G) · GA(G). All the bounds are sharp.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.59277/mrar.2024.26.76.1.17","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The arithmetic-geometric index AG(G) and the geometric-arithmetic index GA(G) of a graph G are defined as AG(G) = P uv∈E(G) dG(u)+dG(v) 2 √ dG(u)dG(v) and GA(G) = P uv∈E(G) 2 √ dG(u)dG(v) dG(u)+dG(v) , where E(G) is the edge set of G, and dG(u) and dG(v) are the degrees of vertices u and v, respectively. We study relations between AG(G) and GA(G) for graphs G of given size, minimum degree and maximum degree. We present lower and upper bounds on AG(G) + GA(G), AG(G) − GA(G) and AG(G) · GA(G). All the bounds are sharp.
分享
查看原文
算术-几何指数和几何-算术指数之间的关系
图 G 的算术几何指数 AG(G) 和几何算术指数GA(G) 定义为 AG(G) = P uv∈E(G) dG(u)+dG(v)2√dG(u)dG(v)andGA(G) =Puv∈E(G)2√dG(u)dG(v)dG(u)+dG(v) 、其中,E(G) 是 G 的边集,dG(u) 和 dG(v) 分别是顶点 u 和 v 的度数。我们研究了给定大小、最小度和最大度的图 G 的 AG(G) 和 GA(G) 之间的关系。我们给出了 AG(G) + GA(G)、AG(G) - GA(G) 和 AG(G) - GA(G) 的下限和上限。所有边界都很尖锐。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信