Numerical Investigation of Diffusion Thermo and Thermal Diffusion on MHD Convective Flow of Williamson Nanofluid on a Stretching Surface Through a Porous Medium in the Presence Chemical Reaction and Thermal Radiation

Q3 Chemical Engineering
Bavanasi Pradeep Kumar, Sangapatnam Suneetha
{"title":"Numerical Investigation of Diffusion Thermo and Thermal Diffusion on MHD Convective Flow of Williamson Nanofluid on a Stretching Surface Through a Porous Medium in the Presence Chemical Reaction and Thermal Radiation","authors":"Bavanasi Pradeep Kumar, Sangapatnam Suneetha","doi":"10.37934/arfmts.115.2.141157","DOIUrl":null,"url":null,"abstract":"In this paper, analyze the impact of Diffusion thermo and thermal diffusion with heat and mass transfer inherent of thermally radiant Williamson nanofluid over a stretyching surface through a porous medium under the convective boundary condition in the presence of thermal radiation and chemical reaction has been studied. The coefficients of Brownian and thermophoresis diffusions are also taken into consideration. The governing partial differential equations are reduced to a couple of nonlinear ordinary differential equations by using suitable transformation equations; these equations are then solved numerically with the use of the conventional fourth-order Runge Kutta method accompanied by the shooting technique. As a result, the effects of various physical parameters on the velocity, temperature, and nanoparticle concentration profiles as well as on the skin friction coefficient and rate of heat transfer are discussed with the aid of graphs and tables. This study has been directly applied in the pharmaceutical industry, microfluidic technology, microbial improved oil recovery, modelling oil and gas-bearing sedimentary basins, and many other fields. Further, to check the accuracy and validation of the present results, satisfactory concurrence is observed with the existing literature.","PeriodicalId":37460,"journal":{"name":"Journal of Advanced Research in Fluid Mechanics and Thermal Sciences","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Advanced Research in Fluid Mechanics and Thermal Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37934/arfmts.115.2.141157","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Chemical Engineering","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, analyze the impact of Diffusion thermo and thermal diffusion with heat and mass transfer inherent of thermally radiant Williamson nanofluid over a stretyching surface through a porous medium under the convective boundary condition in the presence of thermal radiation and chemical reaction has been studied. The coefficients of Brownian and thermophoresis diffusions are also taken into consideration. The governing partial differential equations are reduced to a couple of nonlinear ordinary differential equations by using suitable transformation equations; these equations are then solved numerically with the use of the conventional fourth-order Runge Kutta method accompanied by the shooting technique. As a result, the effects of various physical parameters on the velocity, temperature, and nanoparticle concentration profiles as well as on the skin friction coefficient and rate of heat transfer are discussed with the aid of graphs and tables. This study has been directly applied in the pharmaceutical industry, microfluidic technology, microbial improved oil recovery, modelling oil and gas-bearing sedimentary basins, and many other fields. Further, to check the accuracy and validation of the present results, satisfactory concurrence is observed with the existing literature.
存在化学反应和热辐射时威廉姆森纳米流体在多孔介质伸展表面上的 MHD 对流的热扩散和热扩散数值研究
本文研究了在热辐射和化学反应存在的对流边界条件下,热辐射威廉姆森纳米流体在多孔介质上的热扩散和热扩散对热辐射威廉姆森纳米流体固有传热和传质的影响。布朗扩散和热泳扩散系数也被考虑在内。通过使用适当的转换方程,将支配偏微分方程简化为几个非线性常微分方程;然后使用传统的四阶 Runge Kutta 方法和射频技术对这些方程进行数值求解。结果,借助图表讨论了各种物理参数对速度、温度和纳米粒子浓度分布以及对皮肤摩擦系数和传热速率的影响。这项研究已直接应用于制药业、微流体技术、微生物提高石油采收率、含油气沉积盆地建模等多个领域。此外,为了检验本研究结果的准确性和有效性,本研究结果与现有文献的一致性也令人满意。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Advanced Research in Fluid Mechanics and Thermal Sciences
Journal of Advanced Research in Fluid Mechanics and Thermal Sciences Chemical Engineering-Fluid Flow and Transfer Processes
CiteScore
2.40
自引率
0.00%
发文量
176
期刊介绍: This journal welcomes high-quality original contributions on experimental, computational, and physical aspects of fluid mechanics and thermal sciences relevant to engineering or the environment, multiphase and microscale flows, microscale electronic and mechanical systems; medical and biological systems; and thermal and flow control in both the internal and external environment.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信