A Physics-based Model-data-driven Method for Spindle Health Diagnosis, Part II: Dynamic Simulation and Validation

Chung-Yu Tai, Yusuf Altintas
{"title":"A Physics-based Model-data-driven Method for Spindle Health Diagnosis, Part II: Dynamic Simulation and Validation","authors":"Chung-Yu Tai, Yusuf Altintas","doi":"10.1115/1.4065221","DOIUrl":null,"url":null,"abstract":"\n Mathematical modeling of bearing faults, worn tool holder taper contact interface, and unbalance are presented and integrated into a digital dynamic model of spindles in Part I of this paper. These faults lead to changes in preload and dynamic stiffness over time, consequently resulting in observable vibrations. This paper predicts the vibrations of a spindle at a particular measurement location by simulating the presence of a specific fault or multiple faults during spindle rotation. The vibration spectra generated by the digital spindle model at the spindle speed and its harmonics, the changes in the natural frequencies, and dynamic stiffnesses are correlated to faults with experimental validations. The simulated vibration spectrums are later used in training an artificial neural network for fault condition monitoring presented in Part III of the paper.","PeriodicalId":507815,"journal":{"name":"Journal of Manufacturing Science and Engineering","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Manufacturing Science and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/1.4065221","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Mathematical modeling of bearing faults, worn tool holder taper contact interface, and unbalance are presented and integrated into a digital dynamic model of spindles in Part I of this paper. These faults lead to changes in preload and dynamic stiffness over time, consequently resulting in observable vibrations. This paper predicts the vibrations of a spindle at a particular measurement location by simulating the presence of a specific fault or multiple faults during spindle rotation. The vibration spectra generated by the digital spindle model at the spindle speed and its harmonics, the changes in the natural frequencies, and dynamic stiffnesses are correlated to faults with experimental validations. The simulated vibration spectrums are later used in training an artificial neural network for fault condition monitoring presented in Part III of the paper.
基于物理模型和数据的主轴健康诊断方法,第二部分:动态模拟和验证
本文第一部分介绍了轴承故障、刀架锥面接触界面磨损和不平衡的数学建模,并将其集成到主轴的数字动态模型中。这些故障会导致预紧力和动态刚度随时间发生变化,从而产生可观测到的振动。本文通过模拟主轴旋转过程中出现的特定故障或多重故障,预测特定测量位置的主轴振动。数字主轴模型在主轴转速及其谐波下产生的振动频谱、固有频率的变化以及动态刚度与实验验证的故障相关联。模拟的振动频谱随后将用于训练本文第三部分介绍的故障状态监测人工神经网络。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信