Geometric stochastic ray propagation using the special Euclidean group.

IF 1.2 Q3 ACOUSTICS
Tyler Paine, E. Bhatt
{"title":"Geometric stochastic ray propagation using the special Euclidean group.","authors":"Tyler Paine, E. Bhatt","doi":"10.1121/10.0025522","DOIUrl":null,"url":null,"abstract":"This paper describes a stochastic model of ray trajectory propagation through a medium-such as the ocean-which has an uncertain sound speed profile. We frame ray propagation as a geometric fractal Brownian motion process on the special Euclidean group of dimension two, SE(2). The framing includes diffusion parameters to describe how the stochastic rays deviate from the expected rays, and these diffusion parameters are a function of the uncertainty in the sound speed profile. We demonstrate this framing for the classical Munk profile and a double-ducted profile in the Beaufort.","PeriodicalId":73538,"journal":{"name":"JASA express letters","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JASA express letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1121/10.0025522","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 0

Abstract

This paper describes a stochastic model of ray trajectory propagation through a medium-such as the ocean-which has an uncertain sound speed profile. We frame ray propagation as a geometric fractal Brownian motion process on the special Euclidean group of dimension two, SE(2). The framing includes diffusion parameters to describe how the stochastic rays deviate from the expected rays, and these diffusion parameters are a function of the uncertainty in the sound speed profile. We demonstrate this framing for the classical Munk profile and a double-ducted profile in the Beaufort.
使用特殊欧几里得群的几何随机射线传播。
本文描述了射线轨迹在具有不确定声速剖面的介质(如海洋)中传播的随机模型。我们将射线传播框定为二维特殊欧几里得群 SE(2) 上的几何分形布朗运动过程。该框架包括扩散参数,用于描述随机射线如何偏离预期射线,这些扩散参数是声速剖面不确定性的函数。我们为经典的蒙克剖面和波弗特双导剖面演示了这一框架。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.70
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信