Object classification with aggregating multiple spatial views using a machine-learning approach

Šimon Grác, Peter Beno, F. Duchoň, Michal Malý, Martin Dekan
{"title":"Object classification with aggregating multiple spatial views using a machine-learning approach","authors":"Šimon Grác, Peter Beno, F. Duchoň, Michal Malý, Martin Dekan","doi":"10.2478/jee-2024-0017","DOIUrl":null,"url":null,"abstract":"\n The article proposes a solution for object classification using multiple views generated from 3D data rendering and convolutional neural networks. For presentation purposes and easier verification of the solution, an application was developed to create views of 3D objects, classify them using the selected CNN, and evaluate the performance of the CNN. The evaluation is based on metrics and characteristics described in the article. Seven testing objects were used to verify the proposed solution; five CNNs were tested for each.","PeriodicalId":508697,"journal":{"name":"Journal of Electrical Engineering","volume":"162 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Electrical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/jee-2024-0017","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The article proposes a solution for object classification using multiple views generated from 3D data rendering and convolutional neural networks. For presentation purposes and easier verification of the solution, an application was developed to create views of 3D objects, classify them using the selected CNN, and evaluate the performance of the CNN. The evaluation is based on metrics and characteristics described in the article. Seven testing objects were used to verify the proposed solution; five CNNs were tested for each.
利用机器学习方法汇总多个空间视图进行物体分类
文章提出了一种利用三维数据渲染和卷积神经网络生成的多视图进行物体分类的解决方案。为便于介绍和验证该解决方案,开发了一个应用程序来创建三维物体视图,使用所选的卷积神经网络对其进行分类,并评估卷积神经网络的性能。评估基于文章中描述的指标和特征。七个测试对象用于验证所提出的解决方案;每个对象测试了五个 CNN。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信