Analisis Sentimen Ulasan Aplikasi Smart Campus Unisbank di Google Playstore Menggunakan Algoritma Naive Bayes

Dwi Rahma Firmansyah, E. Lestariningsih
{"title":"Analisis Sentimen Ulasan Aplikasi Smart Campus Unisbank di Google Playstore Menggunakan Algoritma Naive Bayes","authors":"Dwi Rahma Firmansyah, E. Lestariningsih","doi":"10.35870/jtik.v8i2.1882","DOIUrl":null,"url":null,"abstract":"This study explores sentiment analysis on SmartCampus Unisbank application reviews on Google Play Store using the Naive Bayes classification method. Through Python programming language and web scraping techniques employing the google-play-scraper library, review data was automatically obtained and organized in CSV format. Text preprocessing techniques such as case folding, stopwords removal, tokenization, and stemming were applied to ensure accurate analysis. The data was divided into training and testing sets, and TF-IDF (Term Frequency-Inverse Document Frequency) was used for feature extraction. A Naive Bayes model was constructed and evaluated, achieving an accuracy of 84.6%. While the model demonstrated proficiency in identifying negative sentiments with 100% precision, it requires refinement for recognizing positive sentiments. These findings provide valuable insights for SmartCampus Unisbank developers to understand user perspectives and improve application quality","PeriodicalId":474679,"journal":{"name":"Jurnal JTIK (Jurnal Teknologi Informasi dan Komunikasi)","volume":"493 ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jurnal JTIK (Jurnal Teknologi Informasi dan Komunikasi)","FirstCategoryId":"0","ListUrlMain":"https://doi.org/10.35870/jtik.v8i2.1882","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This study explores sentiment analysis on SmartCampus Unisbank application reviews on Google Play Store using the Naive Bayes classification method. Through Python programming language and web scraping techniques employing the google-play-scraper library, review data was automatically obtained and organized in CSV format. Text preprocessing techniques such as case folding, stopwords removal, tokenization, and stemming were applied to ensure accurate analysis. The data was divided into training and testing sets, and TF-IDF (Term Frequency-Inverse Document Frequency) was used for feature extraction. A Naive Bayes model was constructed and evaluated, achieving an accuracy of 84.6%. While the model demonstrated proficiency in identifying negative sentiments with 100% precision, it requires refinement for recognizing positive sentiments. These findings provide valuable insights for SmartCampus Unisbank developers to understand user perspectives and improve application quality
使用 Naive Bayes 算法对 Google Playstore 上的智慧校园 Unisbank 应用程序评论进行情感分析
本研究采用 Naive Bayes 分类方法对 Google Play 商店中 SmartCampus Unisbank 应用程序的评论进行情感分析。通过 Python 编程语言和使用 google-play-scraper 库的网络刮擦技术,评论数据被自动获取并整理成 CSV 格式。为确保分析的准确性,还采用了文本预处理技术,如折叠大小写、删除停滞词、标记化和词干化。数据被分为训练集和测试集,并使用 TF-IDF(词频-反向文档频率)进行特征提取。构建并评估了一个 Naive Bayes 模型,准确率达到 84.6%。虽然该模型在识别负面情绪方面的准确率达到了 100%,但在识别正面情绪方面还需要改进。这些发现为 SmartCampus Unisbank 开发人员了解用户观点和提高应用质量提供了宝贵的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信