Parameters of Hecke algebras for Bernstein components of p-adic groups

IF 0.5 4区 数学 Q3 MATHEMATICS
Maarten Solleveld
{"title":"Parameters of Hecke algebras for Bernstein components of p-adic groups","authors":"Maarten Solleveld","doi":"10.1016/j.indag.2024.04.005","DOIUrl":null,"url":null,"abstract":"<div><div>Let <span><math><mi>G</mi></math></span> be a reductive group over a non-archimedean local field <span><math><mi>F</mi></math></span>. Consider an arbitrary Bernstein block <span><math><mrow><mi>Rep</mi><msup><mrow><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow><mrow><mi>s</mi></mrow></msup></mrow></math></span> in the category of complex smooth <span><math><mi>G</mi></math></span>-representations. In earlier work the author showed that there exists an affine Hecke algebra <span><math><mrow><mi>H</mi><mrow><mo>(</mo><mi>O</mi><mo>,</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> whose category of right modules is closely related to <span><math><mrow><mi>Rep</mi><msup><mrow><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow><mrow><mi>s</mi></mrow></msup></mrow></math></span>. In many cases this is in fact an equivalence of categories, like for Iwahori-spherical representations.</div><div>In this paper we study the <span><math><mi>q</mi></math></span>-parameters of the affine Hecke algebras <span><math><mrow><mi>H</mi><mrow><mo>(</mo><mi>O</mi><mo>,</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span>. We compute them in many cases, in particular for principal series representations of quasi-split groups and for classical groups.</div><div>Lusztig conjectured that the <span><math><mi>q</mi></math></span>-parameters are always integral powers of the cardinality of the residue field of <span><math><mi>F</mi></math></span>, and that they coincide with the <span><math><mi>q</mi></math></span>-parameters coming from some Bernstein block of unipotent representations. We reduce this conjecture to the case of absolutely simple <span><math><mi>p</mi></math></span>-adic groups, and we prove it for most of those.</div></div>","PeriodicalId":56126,"journal":{"name":"Indagationes Mathematicae-New Series","volume":"36 1","pages":"Pages 124-170"},"PeriodicalIF":0.5000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indagationes Mathematicae-New Series","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0019357724000375","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Let G be a reductive group over a non-archimedean local field F. Consider an arbitrary Bernstein block Rep(G)s in the category of complex smooth G-representations. In earlier work the author showed that there exists an affine Hecke algebra H(O,G) whose category of right modules is closely related to Rep(G)s. In many cases this is in fact an equivalence of categories, like for Iwahori-spherical representations.
In this paper we study the q-parameters of the affine Hecke algebras H(O,G). We compute them in many cases, in particular for principal series representations of quasi-split groups and for classical groups.
Lusztig conjectured that the q-parameters are always integral powers of the cardinality of the residue field of F, and that they coincide with the q-parameters coming from some Bernstein block of unipotent representations. We reduce this conjecture to the case of absolutely simple p-adic groups, and we prove it for most of those.
p-adic 群伯恩斯坦成分的赫克代数参数
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.20
自引率
16.70%
发文量
74
审稿时长
79 days
期刊介绍: Indagationes Mathematicae is a peer-reviewed international journal for the Mathematical Sciences of the Royal Dutch Mathematical Society. The journal aims at the publication of original mathematical research papers of high quality and of interest to a large segment of the mathematics community. The journal also welcomes the submission of review papers of high quality.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信