Deep learning-based fall detection using commodity Wi-Fi

Tingwei Chen , Xiaoyang Li , Hang Li , Guangxu Zhu
{"title":"Deep learning-based fall detection using commodity Wi-Fi","authors":"Tingwei Chen ,&nbsp;Xiaoyang Li ,&nbsp;Hang Li ,&nbsp;Guangxu Zhu","doi":"10.1016/j.jiixd.2024.04.001","DOIUrl":null,"url":null,"abstract":"<div><p>As the phenomenon of an aging population gradually becomes common worldwide, the pressure on the elderly has seen a notable increase. To address this challenge, fall detection systems are important in ensuring the safety of the elderly population, particularly those living alone. Wi-Fi sensing, as a privacy-preserving method of perception, can be deployed indoors for detecting human activities such as falls, based on the reflective properties of electromagnetic waves. Signals generated by transmitters experience reflections from various objects within indoor environments, leading to distinct propagation paths. These signals eventually aggregate at the receiver, incorporating details about the objects’ orientation and their activity states. In this study, within practical experimental environments, we collect dataset and utilize deep learning method to classify the falling events.</p></div>","PeriodicalId":100790,"journal":{"name":"Journal of Information and Intelligence","volume":"2 4","pages":"Pages 355-364"},"PeriodicalIF":0.0000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2949715924000283/pdfft?md5=f31939e6bf88241fc2bd69185c959aa9&pid=1-s2.0-S2949715924000283-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Information and Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949715924000283","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

As the phenomenon of an aging population gradually becomes common worldwide, the pressure on the elderly has seen a notable increase. To address this challenge, fall detection systems are important in ensuring the safety of the elderly population, particularly those living alone. Wi-Fi sensing, as a privacy-preserving method of perception, can be deployed indoors for detecting human activities such as falls, based on the reflective properties of electromagnetic waves. Signals generated by transmitters experience reflections from various objects within indoor environments, leading to distinct propagation paths. These signals eventually aggregate at the receiver, incorporating details about the objects’ orientation and their activity states. In this study, within practical experimental environments, we collect dataset and utilize deep learning method to classify the falling events.

利用商品 Wi-Fi 进行基于深度学习的跌倒检测
随着全球人口老龄化现象逐渐普遍,老年人所承受的压力也明显增加。为了应对这一挑战,跌倒检测系统对于确保老年人,尤其是独居老人的安全非常重要。基于电磁波的反射特性,Wi-Fi 传感作为一种保护隐私的感知方法,可以在室内部署,用于检测跌倒等人类活动。发射器产生的信号会受到室内环境中各种物体的反射,从而形成不同的传播路径。这些信号最终会在接收器处汇聚,并包含物体方位及其活动状态的详细信息。在本研究中,我们在实际实验环境中收集数据集,并利用深度学习方法对坠落事件进行分类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信