ESTIMATE FOR HIGHER MOMENTS OF CUSP FORM COEFFICIENTS OVER SUM OF TWO SQUARES COEFFICIENTS OVER SUM OF TWO SQUARES

Pub Date : 2024-04-01 DOI:10.59277/mrar.2024.26.76.1.71
Guodong Hua
{"title":"ESTIMATE FOR HIGHER MOMENTS OF CUSP FORM COEFFICIENTS OVER SUM OF TWO SQUARES COEFFICIENTS OVER SUM OF TWO SQUARES","authors":"Guodong Hua","doi":"10.59277/mrar.2024.26.76.1.71","DOIUrl":null,"url":null,"abstract":"Let f and g be two distinct primitive holomorphic cusp forms of even integral\nweights k1 and k2 for the full modular group Γ = SL(2, Z), respectively. Denote\nby λf (n) and λg(n) the nth normalized Fourier coefficients of f and g,\nrespectively. In this paper, we consider the summatory function\nX\nn=a2+b2≤x\nλf (n)iλg(n)j ,\nfor x ≥ 2, where a, b ∈ Z and i, j ≥ 1 are positive integers.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.59277/mrar.2024.26.76.1.71","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Let f and g be two distinct primitive holomorphic cusp forms of even integral weights k1 and k2 for the full modular group Γ = SL(2, Z), respectively. Denote by λf (n) and λg(n) the nth normalized Fourier coefficients of f and g, respectively. In this paper, we consider the summatory function X n=a2+b2≤x λf (n)iλg(n)j , for x ≥ 2, where a, b ∈ Z and i, j ≥ 1 are positive integers.
分享
查看原文
顶点形式系数的高阶矩估计,超过两平方和系数的高阶矩估计,超过两平方和系数的高阶矩估计
设 f 和 g 分别是全模态群 Γ = SL(2, Z) 的偶数积分权重 k1 和 k2 的两个不同的原始全形尖顶形式。用 λf (n) 和 λg(n) 分别表示 f 和 g 的 n 次归一化傅里叶系数。在本文中,我们考虑求和函数 Xn=a2+b2≤xλf (n)iλg(n)j ,对于 x ≥ 2,其中 a、b∈ Z,i、j ≥ 1 为正整数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信