Khalid M. Hosny , Walaa M. El-Hady , Farid M. Samy
{"title":"Technologies, Protocols, and applications of Internet of Things in greenhouse Farming: A survey of recent advances","authors":"Khalid M. Hosny , Walaa M. El-Hady , Farid M. Samy","doi":"10.1016/j.inpa.2024.04.002","DOIUrl":null,"url":null,"abstract":"<div><div>Greenhouse farming is considered one of the precision and sustainable forms of smart agriculture. Although greenhouse gases can support off-season crops inside the indoor environment, monitoring, controlling, and managing crop parameters at greenhouse farms more precisely and securely is necessary, even in harsh climate regions. The evolving Internet of Things (IoT) technologies, including smart sensors, devices, network topologies, big data analytics, and intelligent decision-making, are thought to be the solution for automating greenhouse farming parameters like internal atmosphere control, irrigation control, crop growth monitoring, and so on. This paper introduces a comprehensive survey of recent advances in IoT-based greenhouse farming. We summarize the related review articles. The classification of greenhouse farming based on IoT (smart greenhouse, hydroponics greenhouse, and vertical farming) is introduced. Also, we present a detailed architecture for the components of greenhouse agriculture applications based on IoT, including physical devices, communication protocols, and cloud/fog computing technologies. We also present a classification of IoT applications of greenhouse farming, including monitoring, controlling, tracking, and predicting. Furthermore, we present the technical and resource management challenges for optimal greenhouse farming. Moreover, countries already applying IoT in greenhouse farming have been presented. Lastly, future suggestions related to IoT-based greenhouse farming have been introduced.</div></div>","PeriodicalId":53443,"journal":{"name":"Information Processing in Agriculture","volume":"12 1","pages":"Pages 91-111"},"PeriodicalIF":7.7000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information Processing in Agriculture","FirstCategoryId":"1091","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214317324000222","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Greenhouse farming is considered one of the precision and sustainable forms of smart agriculture. Although greenhouse gases can support off-season crops inside the indoor environment, monitoring, controlling, and managing crop parameters at greenhouse farms more precisely and securely is necessary, even in harsh climate regions. The evolving Internet of Things (IoT) technologies, including smart sensors, devices, network topologies, big data analytics, and intelligent decision-making, are thought to be the solution for automating greenhouse farming parameters like internal atmosphere control, irrigation control, crop growth monitoring, and so on. This paper introduces a comprehensive survey of recent advances in IoT-based greenhouse farming. We summarize the related review articles. The classification of greenhouse farming based on IoT (smart greenhouse, hydroponics greenhouse, and vertical farming) is introduced. Also, we present a detailed architecture for the components of greenhouse agriculture applications based on IoT, including physical devices, communication protocols, and cloud/fog computing technologies. We also present a classification of IoT applications of greenhouse farming, including monitoring, controlling, tracking, and predicting. Furthermore, we present the technical and resource management challenges for optimal greenhouse farming. Moreover, countries already applying IoT in greenhouse farming have been presented. Lastly, future suggestions related to IoT-based greenhouse farming have been introduced.
期刊介绍:
Information Processing in Agriculture (IPA) was established in 2013 and it encourages the development towards a science and technology of information processing in agriculture, through the following aims: • Promote the use of knowledge and methods from the information processing technologies in the agriculture; • Illustrate the experiences and publications of the institutes, universities and government, and also the profitable technologies on agriculture; • Provide opportunities and platform for exchanging knowledge, strategies and experiences among the researchers in information processing worldwide; • Promote and encourage interactions among agriculture Scientists, Meteorologists, Biologists (Pathologists/Entomologists) with IT Professionals and other stakeholders to develop and implement methods, techniques, tools, and issues related to information processing technology in agriculture; • Create and promote expert groups for development of agro-meteorological databases, crop and livestock modelling and applications for development of crop performance based decision support system. Topics of interest include, but are not limited to: • Smart Sensor and Wireless Sensor Network • Remote Sensing • Simulation, Optimization, Modeling and Automatic Control • Decision Support Systems, Intelligent Systems and Artificial Intelligence • Computer Vision and Image Processing • Inspection and Traceability for Food Quality • Precision Agriculture and Intelligent Instrument • The Internet of Things and Cloud Computing • Big Data and Data Mining