Erkan Kayikcioglu , Arif Hakan Onder , Burcu Bacak , Tekin Ahmet Serel
{"title":"Machine learning for predicting colon cancer recurrence","authors":"Erkan Kayikcioglu , Arif Hakan Onder , Burcu Bacak , Tekin Ahmet Serel","doi":"10.1016/j.suronc.2024.102079","DOIUrl":null,"url":null,"abstract":"<div><h3>Introduction</h3><p>Colorectal cancer (CRC) is a global public health concern, ranking among the most commonly diagnosed malignancies worldwide. Despite advancements in treatment modalities, the specter of CRC recurrence remains a significant challenge, demanding innovative solutions for early detection and intervention. The integration of machine learning into oncology offers a promising avenue to address this issue, providing data-driven insights and personalized care.</p></div><div><h3>Methods</h3><p>This retrospective study analyzed data from 396 patients who underwent surgical procedures for colon cancer (CC) between 2010 and 2021. Machine learning algorithms were employed to predict CC recurrence, with a focus on demographic, clinicopathological, and laboratory characteristics. A range of evaluation metrics, including AUC (Area Under the Receiver Operating Characteristic), accuracy, recall, precision, and F1 scores, assessed the performance of machine learning algorithms.</p></div><div><h3>Results</h3><p>Significant risk factors for CC recurrence were identified, including sex, carcinoembryonic antigen (CEA) levels, tumor location, depth, lymphatic and venous invasion, and lymph node involvement. The CatBoost Classifier demonstrated exceptional performance, achieving an AUC of 0.92 and an accuracy of 88 % on the test dataset. Feature importance analysis highlighted the significance of CEA levels, albumin levels, N stage, weight, platelet count, height, neutrophil count, lymphocyte count, and gender in determining recurrence risk.</p></div><div><h3>Discussion</h3><p>The integration of machine learning into healthcare, exemplified by this study's findings, offers a pathway to personalized patient risk stratification and enhanced clinical decision-making. Early identification of individuals at risk of CC recurrence holds the potential for more effective therapeutic interventions and improved patient outcomes.</p></div><div><h3>Conclusion</h3><p>Machine learning has the potential to revolutionize our approach to CC recurrence prediction, emphasizing the synergy between medical expertise and cutting-edge technology in the fight against cancer. This study represents a vital step toward precision medicine in CC management, showcasing the transformative power of data-driven insights in oncology.</p></div>","PeriodicalId":51185,"journal":{"name":"Surgical Oncology-Oxford","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2024-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Surgical Oncology-Oxford","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0960740424000471","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Introduction
Colorectal cancer (CRC) is a global public health concern, ranking among the most commonly diagnosed malignancies worldwide. Despite advancements in treatment modalities, the specter of CRC recurrence remains a significant challenge, demanding innovative solutions for early detection and intervention. The integration of machine learning into oncology offers a promising avenue to address this issue, providing data-driven insights and personalized care.
Methods
This retrospective study analyzed data from 396 patients who underwent surgical procedures for colon cancer (CC) between 2010 and 2021. Machine learning algorithms were employed to predict CC recurrence, with a focus on demographic, clinicopathological, and laboratory characteristics. A range of evaluation metrics, including AUC (Area Under the Receiver Operating Characteristic), accuracy, recall, precision, and F1 scores, assessed the performance of machine learning algorithms.
Results
Significant risk factors for CC recurrence were identified, including sex, carcinoembryonic antigen (CEA) levels, tumor location, depth, lymphatic and venous invasion, and lymph node involvement. The CatBoost Classifier demonstrated exceptional performance, achieving an AUC of 0.92 and an accuracy of 88 % on the test dataset. Feature importance analysis highlighted the significance of CEA levels, albumin levels, N stage, weight, platelet count, height, neutrophil count, lymphocyte count, and gender in determining recurrence risk.
Discussion
The integration of machine learning into healthcare, exemplified by this study's findings, offers a pathway to personalized patient risk stratification and enhanced clinical decision-making. Early identification of individuals at risk of CC recurrence holds the potential for more effective therapeutic interventions and improved patient outcomes.
Conclusion
Machine learning has the potential to revolutionize our approach to CC recurrence prediction, emphasizing the synergy between medical expertise and cutting-edge technology in the fight against cancer. This study represents a vital step toward precision medicine in CC management, showcasing the transformative power of data-driven insights in oncology.
期刊介绍:
Surgical Oncology is a peer reviewed journal publishing review articles that contribute to the advancement of knowledge in surgical oncology and related fields of interest. Articles represent a spectrum of current technology in oncology research as well as those concerning clinical trials, surgical technique, methods of investigation and patient evaluation. Surgical Oncology publishes comprehensive Reviews that examine individual topics in considerable detail, in addition to editorials and commentaries which focus on selected papers. The journal also publishes special issues which explore topics of interest to surgical oncologists in great detail - outlining recent advancements and providing readers with the most up to date information.