{"title":"The Improved Method for Identifying Parameters of Interval Nonlinear Models of Static Systems","authors":"Volodymyr Manzhula, M. Dyvak, Vadym Zabchuk","doi":"10.47839/ijc.23.1.3431","DOIUrl":null,"url":null,"abstract":"The article discusses the method of identifying parameters for interval nonlinear models of static systems. The method is based on solving an optimization problem with a smooth objective function. Additional coefficients are added to the objective function's variables to solve the optimization problem, complicating the computational procedures. The computational complexity of quasi-Newton methods used to solve the optimization problem is analyzed. Excessive computational complexity is caused by many iterations when transforming the value of the objective function to zero. To address this, the article proposes using the optimization stop criterion based on the determination of the model's adequacy at the current iteration of the computational optimization procedure. Numerical experiments were conducted to identify nonlinear models of depending the pH of the environment in the fermenter of the biogas plant on influencing factors. It was established that the proposed criterion reduced the number of iterations by 4.5 times, which is proportional to the same reduction in the number of calculations of the objective function. Gotten results are also important for reducing the computational complexity of algorithms of structural identification of these models.","PeriodicalId":37669,"journal":{"name":"International Journal of Computing","volume":"32 7","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.47839/ijc.23.1.3431","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 0
Abstract
The article discusses the method of identifying parameters for interval nonlinear models of static systems. The method is based on solving an optimization problem with a smooth objective function. Additional coefficients are added to the objective function's variables to solve the optimization problem, complicating the computational procedures. The computational complexity of quasi-Newton methods used to solve the optimization problem is analyzed. Excessive computational complexity is caused by many iterations when transforming the value of the objective function to zero. To address this, the article proposes using the optimization stop criterion based on the determination of the model's adequacy at the current iteration of the computational optimization procedure. Numerical experiments were conducted to identify nonlinear models of depending the pH of the environment in the fermenter of the biogas plant on influencing factors. It was established that the proposed criterion reduced the number of iterations by 4.5 times, which is proportional to the same reduction in the number of calculations of the objective function. Gotten results are also important for reducing the computational complexity of algorithms of structural identification of these models.
期刊介绍:
The International Journal of Computing Journal was established in 2002 on the base of Branch Research Laboratory for Automated Systems and Networks, since 2005 it’s renamed as Research Institute of Intelligent Computer Systems. A goal of the Journal is to publish papers with the novel results in Computing Science and Computer Engineering and Information Technologies and Software Engineering and Information Systems within the Journal topics. The official language of the Journal is English; also papers abstracts in both Ukrainian and Russian languages are published there. The issues of the Journal are published quarterly. The Editorial Board consists of about 30 recognized worldwide scientists.