Multivariate directional tail-weighted dependence measures

IF 1.4 3区 数学 Q2 STATISTICS & PROBABILITY
Xiaoting Li, Harry Joe
{"title":"Multivariate directional tail-weighted dependence measures","authors":"Xiaoting Li,&nbsp;Harry Joe","doi":"10.1016/j.jmva.2024.105319","DOIUrl":null,"url":null,"abstract":"<div><p>We propose a new family of directional dependence measures for multivariate distributions. The family of dependence measures is indexed by <span><math><mrow><mi>α</mi><mo>≥</mo><mn>1</mn></mrow></math></span>. When <span><math><mrow><mi>α</mi><mo>=</mo><mn>1</mn></mrow></math></span>, they measure the strength of dependence along different paths to the joint upper or lower orthant. For <span><math><mi>α</mi></math></span> large, they become tail-weighted dependence measures that put more weight in the joint upper or lower tails of the distribution. As <span><math><mrow><mi>α</mi><mo>→</mo><mi>∞</mi></mrow></math></span>, we show the convergence of the directional dependence measures to the multivariate tail dependence function and characterize the convergence pattern with an asymptotic expansion. This expansion leads to a method to estimate the multivariate tail dependence function using weighted least square regression. We develop rank-based sample estimators for the tail-weighted dependence measures and establish their asymptotic distributions. The practical utility of the tail-weighted dependence measures in multivariate tail inference is further demonstrated through their application to a financial dataset.</p></div>","PeriodicalId":16431,"journal":{"name":"Journal of Multivariate Analysis","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2024-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0047259X24000265/pdfft?md5=b41054186655fc814404cc641ffc0dfe&pid=1-s2.0-S0047259X24000265-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Multivariate Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0047259X24000265","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

Abstract

We propose a new family of directional dependence measures for multivariate distributions. The family of dependence measures is indexed by α1. When α=1, they measure the strength of dependence along different paths to the joint upper or lower orthant. For α large, they become tail-weighted dependence measures that put more weight in the joint upper or lower tails of the distribution. As α, we show the convergence of the directional dependence measures to the multivariate tail dependence function and characterize the convergence pattern with an asymptotic expansion. This expansion leads to a method to estimate the multivariate tail dependence function using weighted least square regression. We develop rank-based sample estimators for the tail-weighted dependence measures and establish their asymptotic distributions. The practical utility of the tail-weighted dependence measures in multivariate tail inference is further demonstrated through their application to a financial dataset.

多变量定向尾加权依赖性测量法
我们为多元分布提出了一个新的方向依赖性度量系列。当 α=1 时,它们测量的是通向联合正上方或联合正下方的不同路径的依赖强度。当 α 较大时,它们就变成了尾部加权的依赖性度量,在分布的联合上尾或下尾中赋予更多权重。随着α→∞的增大,我们证明了方向依赖度量向多元尾部依赖函数的收敛,并通过渐近展开描述了收敛模式的特征。这一扩展引出了一种使用加权最小二乘法回归估计多元尾部依赖函数的方法。我们为尾部加权依赖性度量开发了基于等级的样本估计器,并建立了它们的渐近分布。通过将其应用于金融数据集,进一步证明了尾加权依赖性度量在多元尾推断中的实用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Multivariate Analysis
Journal of Multivariate Analysis 数学-统计学与概率论
CiteScore
2.40
自引率
25.00%
发文量
108
审稿时长
74 days
期刊介绍: Founded in 1971, the Journal of Multivariate Analysis (JMVA) is the central venue for the publication of new, relevant methodology and particularly innovative applications pertaining to the analysis and interpretation of multidimensional data. The journal welcomes contributions to all aspects of multivariate data analysis and modeling, including cluster analysis, discriminant analysis, factor analysis, and multidimensional continuous or discrete distribution theory. Topics of current interest include, but are not limited to, inferential aspects of Copula modeling Functional data analysis Graphical modeling High-dimensional data analysis Image analysis Multivariate extreme-value theory Sparse modeling Spatial statistics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信