Feng Yang , Yichao Cao , Qifan Xue , Shuai Jin , Xuanpeng Li , Weigong Zhang
{"title":"CEDR: Contrastive Embedding Distribution Refinement for 3D point cloud representation","authors":"Feng Yang , Yichao Cao , Qifan Xue , Shuai Jin , Xuanpeng Li , Weigong Zhang","doi":"10.1016/j.image.2024.117129","DOIUrl":null,"url":null,"abstract":"<div><p>The distinguishable deep features are essential for the 3D point cloud recognition as they influence the search for the optimal classifier. Most existing point cloud classification methods mainly focus on local information aggregation while ignoring the feature distribution of the whole dataset that indicates more informative and intrinsic semantic relationships of labeled data, if better exploited, which could learn more distinguishing inter-class features. Our work attempts to construct a more distinguishable feature space through performing feature distribution refinement inspired by contrastive learning and sample mining strategies, without modifying the model architecture. To explore the full potential of feature distribution refinement, two modules are involved to boost exceptionally distributed samples distinguishability in an adaptive manner: (i) Confusion-Prone Classes Mining (CPCM) module is aimed at hard-to-distinct classes, which alleviates the massive category-level confusion by generating class-level soft labels; (ii) Entropy-Aware Attention (EAA) mechanism is proposed to remove influence of the trivial cases which could substantially weaken model performance. Our method achieves competitive results on multiple applications of point cloud. In particular, our method gets 85.8% accuracy on ScanObjectNN, and substantial performance gains up to 2.7% in DCGNN, 3.1% in PointNet++, and 2.4% in GBNet. Our code is available at <span>https://github.com/YangFengSEU/CEDR</span><svg><path></path></svg>.</p></div>","PeriodicalId":49521,"journal":{"name":"Signal Processing-Image Communication","volume":"125 ","pages":"Article 117129"},"PeriodicalIF":3.4000,"publicationDate":"2024-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Signal Processing-Image Communication","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0923596524000304","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
The distinguishable deep features are essential for the 3D point cloud recognition as they influence the search for the optimal classifier. Most existing point cloud classification methods mainly focus on local information aggregation while ignoring the feature distribution of the whole dataset that indicates more informative and intrinsic semantic relationships of labeled data, if better exploited, which could learn more distinguishing inter-class features. Our work attempts to construct a more distinguishable feature space through performing feature distribution refinement inspired by contrastive learning and sample mining strategies, without modifying the model architecture. To explore the full potential of feature distribution refinement, two modules are involved to boost exceptionally distributed samples distinguishability in an adaptive manner: (i) Confusion-Prone Classes Mining (CPCM) module is aimed at hard-to-distinct classes, which alleviates the massive category-level confusion by generating class-level soft labels; (ii) Entropy-Aware Attention (EAA) mechanism is proposed to remove influence of the trivial cases which could substantially weaken model performance. Our method achieves competitive results on multiple applications of point cloud. In particular, our method gets 85.8% accuracy on ScanObjectNN, and substantial performance gains up to 2.7% in DCGNN, 3.1% in PointNet++, and 2.4% in GBNet. Our code is available at https://github.com/YangFengSEU/CEDR.
期刊介绍:
Signal Processing: Image Communication is an international journal for the development of the theory and practice of image communication. Its primary objectives are the following:
To present a forum for the advancement of theory and practice of image communication.
To stimulate cross-fertilization between areas similar in nature which have traditionally been separated, for example, various aspects of visual communications and information systems.
To contribute to a rapid information exchange between the industrial and academic environments.
The editorial policy and the technical content of the journal are the responsibility of the Editor-in-Chief, the Area Editors and the Advisory Editors. The Journal is self-supporting from subscription income and contains a minimum amount of advertisements. Advertisements are subject to the prior approval of the Editor-in-Chief. The journal welcomes contributions from every country in the world.
Signal Processing: Image Communication publishes articles relating to aspects of the design, implementation and use of image communication systems. The journal features original research work, tutorial and review articles, and accounts of practical developments.
Subjects of interest include image/video coding, 3D video representations and compression, 3D graphics and animation compression, HDTV and 3DTV systems, video adaptation, video over IP, peer-to-peer video networking, interactive visual communication, multi-user video conferencing, wireless video broadcasting and communication, visual surveillance, 2D and 3D image/video quality measures, pre/post processing, video restoration and super-resolution, multi-camera video analysis, motion analysis, content-based image/video indexing and retrieval, face and gesture processing, video synthesis, 2D and 3D image/video acquisition and display technologies, architectures for image/video processing and communication.