Yige Yin , Qianwen Cui , Jiarong Zhao , Qiang Wu , Qiuyan Sun , Hong-qiang Wang , Wulin Yang
{"title":"Integrated Bioinformatics and Machine Learning Analysis Identify ACADL as a Potent Biomarker of Reactive Mesothelial Cells","authors":"Yige Yin , Qianwen Cui , Jiarong Zhao , Qiang Wu , Qiuyan Sun , Hong-qiang Wang , Wulin Yang","doi":"10.1016/j.ajpath.2024.03.013","DOIUrl":null,"url":null,"abstract":"<div><p>Mesothelial cells with reactive hyperplasia are difficult to distinguish from malignant mesothelioma cells based on cell morphology. This study aimed to identify and validate potential biomarkers that distinguish mesothelial cells from mesothelioma cells through machine learning combined with immunohistochemistry. It integrated the gene expression matrix from three Gene Expression Omnibus data sets (GSE2549, GSE12345, and GSE51024) to analyze the differently expressed genes between normal and mesothelioma tissues. Then, three machine learning algorithms, least absolute shrinkage and selection operator, support vector machine recursive feature elimination, and random forest were used to screen and obtain four shared candidate markers, including <em>ACADL</em>, <em>EMP2</em>, <em>GPD1L</em>, and <em>HMMR</em>. The receiver operating characteristic curve analysis showed that the area under the curve for distinguishing normal mesothelial cells from mesothelioma was 0.976, 0.943, 0.962, and 0.956, respectively. The expression and diagnostic performance of these candidate genes were validated in two additional independent data sets (GSE42977 and GSE112154), indicating that the performances of <em>ACADL</em>, <em>GPD1L</em>, and <em>HMMR</em> were consistent between the training and validation data sets. Finally, the optimal candidate marker <em>ACADL</em> was verified by immunohistochemistry assay. Acyl-CoA dehydrogenase long chain (ACADL) was stained strongly in mesothelial cells, especially for reactive hyperplasic mesothelial cells, but was negative in malignant mesothelioma cells. Therefore, <em>ACADL</em> has the potential to be used as a specific marker of reactive hyperplasic mesothelial cells in the differential diagnosis of mesothelioma.</p></div>","PeriodicalId":7623,"journal":{"name":"American Journal of Pathology","volume":null,"pages":null},"PeriodicalIF":4.7000,"publicationDate":"2024-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"American Journal of Pathology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0002944024001615","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PATHOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Mesothelial cells with reactive hyperplasia are difficult to distinguish from malignant mesothelioma cells based on cell morphology. This study aimed to identify and validate potential biomarkers that distinguish mesothelial cells from mesothelioma cells through machine learning combined with immunohistochemistry. It integrated the gene expression matrix from three Gene Expression Omnibus data sets (GSE2549, GSE12345, and GSE51024) to analyze the differently expressed genes between normal and mesothelioma tissues. Then, three machine learning algorithms, least absolute shrinkage and selection operator, support vector machine recursive feature elimination, and random forest were used to screen and obtain four shared candidate markers, including ACADL, EMP2, GPD1L, and HMMR. The receiver operating characteristic curve analysis showed that the area under the curve for distinguishing normal mesothelial cells from mesothelioma was 0.976, 0.943, 0.962, and 0.956, respectively. The expression and diagnostic performance of these candidate genes were validated in two additional independent data sets (GSE42977 and GSE112154), indicating that the performances of ACADL, GPD1L, and HMMR were consistent between the training and validation data sets. Finally, the optimal candidate marker ACADL was verified by immunohistochemistry assay. Acyl-CoA dehydrogenase long chain (ACADL) was stained strongly in mesothelial cells, especially for reactive hyperplasic mesothelial cells, but was negative in malignant mesothelioma cells. Therefore, ACADL has the potential to be used as a specific marker of reactive hyperplasic mesothelial cells in the differential diagnosis of mesothelioma.
期刊介绍:
The American Journal of Pathology, official journal of the American Society for Investigative Pathology, published by Elsevier, Inc., seeks high-quality original research reports, reviews, and commentaries related to the molecular and cellular basis of disease. The editors will consider basic, translational, and clinical investigations that directly address mechanisms of pathogenesis or provide a foundation for future mechanistic inquiries. Examples of such foundational investigations include data mining, identification of biomarkers, molecular pathology, and discovery research. Foundational studies that incorporate deep learning and artificial intelligence are also welcome. High priority is given to studies of human disease and relevant experimental models using molecular, cellular, and organismal approaches.