{"title":"Research on Secure Community Opportunity Network Based on Trust Model","authors":"Bing Su, Jiwu Liang","doi":"10.3390/fi16040121","DOIUrl":null,"url":null,"abstract":"With the innovation of wireless communication technology and the surge of data in mobile networks, traditional routing strategies need to be improved. Given the shortcomings of existing opportunistic routing strategies in transmission performance and security, this paper proposes a community opportunistic routing decision-making method based on the trust model. This algorithm calculates the node’s trust value through the node’s historical forwarding behavior and then calculates the node’s trust value based on the trust model. Thresholds and trust attenuation divide dynamic security communities. For message forwarding, nodes in the security community are prioritized as next-hop relay nodes, thus ensuring that message delivery is always in a safe and reliable environment. On this basis, better relay nodes are further selected for message forwarding based on the node centrality, remaining cache space, and remaining energy, effectively improving the message forwarding efficiency. Through node trust value and community cooperation, safe and efficient data transmission is achieved, thereby improving the transmission performance and security of the network. Through comparison of simulation and opportunistic network routing algorithms, compared with traditional methods, this strategy has the highest transmission success rate of 81% with slightly increased routing overhead, and this algorithm has the lowest average transmission delay.","PeriodicalId":37982,"journal":{"name":"Future Internet","volume":null,"pages":null},"PeriodicalIF":2.8000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Future Internet","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/fi16040121","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
With the innovation of wireless communication technology and the surge of data in mobile networks, traditional routing strategies need to be improved. Given the shortcomings of existing opportunistic routing strategies in transmission performance and security, this paper proposes a community opportunistic routing decision-making method based on the trust model. This algorithm calculates the node’s trust value through the node’s historical forwarding behavior and then calculates the node’s trust value based on the trust model. Thresholds and trust attenuation divide dynamic security communities. For message forwarding, nodes in the security community are prioritized as next-hop relay nodes, thus ensuring that message delivery is always in a safe and reliable environment. On this basis, better relay nodes are further selected for message forwarding based on the node centrality, remaining cache space, and remaining energy, effectively improving the message forwarding efficiency. Through node trust value and community cooperation, safe and efficient data transmission is achieved, thereby improving the transmission performance and security of the network. Through comparison of simulation and opportunistic network routing algorithms, compared with traditional methods, this strategy has the highest transmission success rate of 81% with slightly increased routing overhead, and this algorithm has the lowest average transmission delay.
Future InternetComputer Science-Computer Networks and Communications
CiteScore
7.10
自引率
5.90%
发文量
303
审稿时长
11 weeks
期刊介绍:
Future Internet is a scholarly open access journal which provides an advanced forum for science and research concerned with evolution of Internet technologies and related smart systems for “Net-Living” development. The general reference subject is therefore the evolution towards the future internet ecosystem, which is feeding a continuous, intensive, artificial transformation of the lived environment, for a widespread and significant improvement of well-being in all spheres of human life (private, public, professional). Included topics are: • advanced communications network infrastructures • evolution of internet basic services • internet of things • netted peripheral sensors • industrial internet • centralized and distributed data centers • embedded computing • cloud computing • software defined network functions and network virtualization • cloud-let and fog-computing • big data, open data and analytical tools • cyber-physical systems • network and distributed operating systems • web services • semantic structures and related software tools • artificial and augmented intelligence • augmented reality • system interoperability and flexible service composition • smart mission-critical system architectures • smart terminals and applications • pro-sumer tools for application design and development • cyber security compliance • privacy compliance • reliability compliance • dependability compliance • accountability compliance • trust compliance • technical quality of basic services.