{"title":"LBM Simulation of Free Convection Heat Transfer of Cu/Water Nanofluid in Inclined Cavity with Non-Uniform Heating Temperature Distribution","authors":"Walid Chelia, Abdelghani Laouer, E. Mezaache","doi":"10.1166/jon.2024.2135","DOIUrl":null,"url":null,"abstract":"In the present study, natural convection of Cu/water nanofluid in an inclined square cavity has been investigated numerically using lattice Boltzmann method (LBM). The left wall of the cavity is maintained at a constant hot temperature, while the right wall is subjected to non-uniform\n temperature distribution. The upper and lower walls are insulated. The fluid flow and heat transfer characteristics are investigated over a wide range of parameters, including Rayleigh numbers (Ra = 103, 104 and 105), solid volume fractions (Φ\n = 0%, 2%, 4% and 6%), amplitude ratio (A = 0, 0.5 and 1) and phase deviations of sinusoidal temperature distribution (Φ = 0, π/4, π/2, 3π/4 and π). The results are presented graphically in the form of streamlines, isotherms and Nusselt\n numbers for the different combinations of the considered parameters. The heat transfer rate inside the nanofluid increases as the Rayleigh number and the volume fraction of nanoparticles increase. Further, an increase in the amplitude ratio results in a decrease in the heat transfer rate,\n with a reduction of up to 8.67% at A = 1. On the other hand, changes in the phase deviation of the sinusoidal temperature distribution lead to an increase in the heat transfer rate, with a surge of up to 32.04% observed at Φ = π.","PeriodicalId":47161,"journal":{"name":"Journal of Nanofluids","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nanofluids","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1166/jon.2024.2135","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NANOSCIENCE & NANOTECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
In the present study, natural convection of Cu/water nanofluid in an inclined square cavity has been investigated numerically using lattice Boltzmann method (LBM). The left wall of the cavity is maintained at a constant hot temperature, while the right wall is subjected to non-uniform
temperature distribution. The upper and lower walls are insulated. The fluid flow and heat transfer characteristics are investigated over a wide range of parameters, including Rayleigh numbers (Ra = 103, 104 and 105), solid volume fractions (Φ
= 0%, 2%, 4% and 6%), amplitude ratio (A = 0, 0.5 and 1) and phase deviations of sinusoidal temperature distribution (Φ = 0, π/4, π/2, 3π/4 and π). The results are presented graphically in the form of streamlines, isotherms and Nusselt
numbers for the different combinations of the considered parameters. The heat transfer rate inside the nanofluid increases as the Rayleigh number and the volume fraction of nanoparticles increase. Further, an increase in the amplitude ratio results in a decrease in the heat transfer rate,
with a reduction of up to 8.67% at A = 1. On the other hand, changes in the phase deviation of the sinusoidal temperature distribution lead to an increase in the heat transfer rate, with a surge of up to 32.04% observed at Φ = π.
期刊介绍:
Journal of Nanofluids (JON) is an international multidisciplinary peer-reviewed journal covering a wide range of research topics in the field of nanofluids and fluid science. It is an ideal and unique reference source for scientists and engineers working in this important and emerging research field of science, engineering and technology. The journal publishes full research papers, review articles with author''s photo and short biography, and communications of important new findings encompassing the fundamental and applied research in all aspects of science and engineering of nanofluids and fluid science related developing technologies.