{"title":"Dense turbulent suspensions at a liquid interface","authors":"Seunghwan Shin, Filippo Coletti","doi":"10.1017/jfm.2024.246","DOIUrl":null,"url":null,"abstract":"The nexus between turbulence, particle interaction and interfacial tension is virtually unexplored, despite being highly relevant to a wealth of industrial and environmental settings. Here we investigate it by conducting experiments on non-Brownian spherical particles at the interface of turbulent liquid layers. The latter are electromagnetically stirred in a quasi-two-dimensional apparatus, while the particles are individually tracked. By systematically varying interfacial conditions, turbulence intensity, particle size and concentration from dilute to dense, we map the system behaviour over a wide parameter space. We reveal how the dynamics is governed by the balance of drag, capillarity and lubrication. Based on their scaling, we propose a phase diagram comprising three distinct regimes, characterized by widely different levels of clustering and fluctuating energy of the particles. This is quantitatively confirmed by the experimental results.","PeriodicalId":505053,"journal":{"name":"Journal of Fluid Mechanics","volume":"37 5","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Fluid Mechanics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/jfm.2024.246","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The nexus between turbulence, particle interaction and interfacial tension is virtually unexplored, despite being highly relevant to a wealth of industrial and environmental settings. Here we investigate it by conducting experiments on non-Brownian spherical particles at the interface of turbulent liquid layers. The latter are electromagnetically stirred in a quasi-two-dimensional apparatus, while the particles are individually tracked. By systematically varying interfacial conditions, turbulence intensity, particle size and concentration from dilute to dense, we map the system behaviour over a wide parameter space. We reveal how the dynamics is governed by the balance of drag, capillarity and lubrication. Based on their scaling, we propose a phase diagram comprising three distinct regimes, characterized by widely different levels of clustering and fluctuating energy of the particles. This is quantitatively confirmed by the experimental results.