GanESS: detecting coherent elastic neutrino-nucleus scattering with noble gases

A. Simón
{"title":"GanESS: detecting coherent elastic neutrino-nucleus scattering with noble gases","authors":"A. Simón","doi":"10.1088/1748-0221/19/04/c04041","DOIUrl":null,"url":null,"abstract":"\n The recent detection of the coherent elastic neutrino-nucleus scattering (CEνNS) opens the possibility to use neutrinos to explore physics beyond standard model with small size detectors. However, the CEνNS process generates signals at the few keV level, requiring very sensitive detecting technologies for its detection. The European Spallation Source (ESS) has been identified as an optimal source of low energy neutrinos offering an opportunity for a definitive exploration of all phenomenological applications of CEνNS.\n\nGanESS will use a high-pressure noble gas time projection chamber to measure CEνNS at ESS in gaseous Xe, Ar and Kr. Such technique appears extraordinarily promising for detecting the process, although characterization of the response to few-keV nuclear recoils will be necessary. With this goal, we are currently commissioning GaP, a small prototype capable of operating up to 50 bar. GaP will serve to fully evaluate the low energy response of the technique, with a strong focus on measuring the quenching factor for the different noble gases that will later be used at GanESS. An overview of the GanESS project with a focus on the status of GaP and its short-term plans is presented.","PeriodicalId":507814,"journal":{"name":"Journal of Instrumentation","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Instrumentation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1748-0221/19/04/c04041","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The recent detection of the coherent elastic neutrino-nucleus scattering (CEνNS) opens the possibility to use neutrinos to explore physics beyond standard model with small size detectors. However, the CEνNS process generates signals at the few keV level, requiring very sensitive detecting technologies for its detection. The European Spallation Source (ESS) has been identified as an optimal source of low energy neutrinos offering an opportunity for a definitive exploration of all phenomenological applications of CEνNS. GanESS will use a high-pressure noble gas time projection chamber to measure CEνNS at ESS in gaseous Xe, Ar and Kr. Such technique appears extraordinarily promising for detecting the process, although characterization of the response to few-keV nuclear recoils will be necessary. With this goal, we are currently commissioning GaP, a small prototype capable of operating up to 50 bar. GaP will serve to fully evaluate the low energy response of the technique, with a strong focus on measuring the quenching factor for the different noble gases that will later be used at GanESS. An overview of the GanESS project with a focus on the status of GaP and its short-term plans is presented.
GanESS:用惰性气体探测相干弹性中微核散射
最近对相干弹性中微子-核散射(CEνNS)的探测为利用中微子和小型探测器探索标准模型之外的物理学提供了可能性。然而,CEνNS 过程会产生几千伏的信号,需要非常灵敏的探测技术才能探测到。GanESS 将使用高压惰性气体时间投影室,在气态 Xe、Ar 和 Kr 中测量 ESS 的 CEνNS。这种技术在探测这一过程方面似乎大有可为,不过还需要确定对几千伏核反冲的响应特征。为了实现这一目标,我们目前正在试运行 GaP,这是一个小型原型,工作压力可达 50 巴。GaP 将用于全面评估该技术的低能响应,重点是测量不同惰性气体的淬火因子,这些惰性气体随后将在 GanESS 中使用。本文概述了 GanESS 项目,重点介绍了 GaP 的现状及其短期计划。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信