{"title":"Magnetohydrodynamic Free Convective Flow in a Vertical Microchannel with Heat Sink","authors":"J. Prathap Kumar, J. Umavathi, Shivaleela Patil","doi":"10.1166/jon.2024.2150","DOIUrl":null,"url":null,"abstract":"Electrically conducting fluid flowing past a micro-channel is investigated in the presence of heat sink. The governing equations of the system are non-dimensionalzed by using suitable dimensionless quantities. Exact solutions are computed for the momentum, energy, volume flow rate,\n skin friction and the rate of heat transfer. The impact of flow controlling factors like the fluid-wall interaction parameter, the rarefaction parameter, Hartmann number, suction/injection, and heat sink are presented pictorially. Results show that the velocity is augmented with rarefaction\n parameter whereas it is decelerated with fluid-wall interaction, Hartmann number, and heat sink for all values of temperature difference ratio. Injection retards the flow whereas suction accelerates the flow. The volumetric flow rate decreases for asymmetric heating and increases for symmetric\n heating. The heat sink parameter increases the rate of heat transfer at the right plate whereas it decreases at the left plate. The results which are analyzed have applications in modelling the combustion heat exchangers and nuclear energy.","PeriodicalId":47161,"journal":{"name":"Journal of Nanofluids","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nanofluids","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1166/jon.2024.2150","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NANOSCIENCE & NANOTECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Electrically conducting fluid flowing past a micro-channel is investigated in the presence of heat sink. The governing equations of the system are non-dimensionalzed by using suitable dimensionless quantities. Exact solutions are computed for the momentum, energy, volume flow rate,
skin friction and the rate of heat transfer. The impact of flow controlling factors like the fluid-wall interaction parameter, the rarefaction parameter, Hartmann number, suction/injection, and heat sink are presented pictorially. Results show that the velocity is augmented with rarefaction
parameter whereas it is decelerated with fluid-wall interaction, Hartmann number, and heat sink for all values of temperature difference ratio. Injection retards the flow whereas suction accelerates the flow. The volumetric flow rate decreases for asymmetric heating and increases for symmetric
heating. The heat sink parameter increases the rate of heat transfer at the right plate whereas it decreases at the left plate. The results which are analyzed have applications in modelling the combustion heat exchangers and nuclear energy.
期刊介绍:
Journal of Nanofluids (JON) is an international multidisciplinary peer-reviewed journal covering a wide range of research topics in the field of nanofluids and fluid science. It is an ideal and unique reference source for scientists and engineers working in this important and emerging research field of science, engineering and technology. The journal publishes full research papers, review articles with author''s photo and short biography, and communications of important new findings encompassing the fundamental and applied research in all aspects of science and engineering of nanofluids and fluid science related developing technologies.