{"title":"Object detection algorithm for indoor switchgear components in substations based on improved YOLOv5s","authors":"Changdong Wu, Liu Rui","doi":"10.1784/insi.2024.66.4.226","DOIUrl":null,"url":null,"abstract":"With the continuous progress of science and technology, electric power equipment detection systems are developing in the direction of artificial intelligence. To achieve good automatic detection results, a high-quality and speedy algorithm is designed to intelligently detect indoor\n switchgear components in substations. This proposed method can detect the status of components based on image processing technology, which belongs to the field of condition monitoring. In this paper, the targets to be detected include multi-colour buttons or lights and the ammeters or voltmeters\n of the electrical switchgear. Two hybrid improved algorithms are used to optimise the you only look once v5s (YOLOv5s) network framework for increasing the detection speed and performance. Firstly, deeper feature map extraction is achieved using HorNet recursive gated convolution to replace\n the original C3 module for more efficient results. Then, a bidirectional feature pyramid network (BiFPN) algorithm is used to achieve the bidirectional propagation of feature information in the feature pyramid. This method can promote better fusion of feature information at different levels\n and help to convey feature and location information in the image. Finally, the improved YOLOv5s-BH model is used to detect the targets in substations. The experimental results show that the proposed method provides encouraging detection results for indoor switchgear components in substations.","PeriodicalId":506650,"journal":{"name":"Insight - Non-Destructive Testing and Condition Monitoring","volume":"583 ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Insight - Non-Destructive Testing and Condition Monitoring","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1784/insi.2024.66.4.226","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
With the continuous progress of science and technology, electric power equipment detection systems are developing in the direction of artificial intelligence. To achieve good automatic detection results, a high-quality and speedy algorithm is designed to intelligently detect indoor
switchgear components in substations. This proposed method can detect the status of components based on image processing technology, which belongs to the field of condition monitoring. In this paper, the targets to be detected include multi-colour buttons or lights and the ammeters or voltmeters
of the electrical switchgear. Two hybrid improved algorithms are used to optimise the you only look once v5s (YOLOv5s) network framework for increasing the detection speed and performance. Firstly, deeper feature map extraction is achieved using HorNet recursive gated convolution to replace
the original C3 module for more efficient results. Then, a bidirectional feature pyramid network (BiFPN) algorithm is used to achieve the bidirectional propagation of feature information in the feature pyramid. This method can promote better fusion of feature information at different levels
and help to convey feature and location information in the image. Finally, the improved YOLOv5s-BH model is used to detect the targets in substations. The experimental results show that the proposed method provides encouraging detection results for indoor switchgear components in substations.