{"title":"Comet P/2003 T12 (SOHO): A possible fragment of comet 169P/NEAT?","authors":"Santiago Roland Alvarez, Andrea Sosa Oyarzabal","doi":"10.1016/j.pss.2024.105902","DOIUrl":null,"url":null,"abstract":"<div><p>This work provides insights into the possible origin of comet P/2003 T12 (SOHO) and the dynamics of comet fragmentation events. We studied the hypothesis of the origin of the comet P/2003 T12 (SOHO) as a fragment of the Jupiter family comet 169P/NEAT. We studied the recent dynamical evolution of the comet pair and determined the epochs of relative minimum distance and velocity as well as the similarity between the orbits using different criteria following Rożek et al. (2011) and Kholshevnikov et al. (2016). We generated 6000 clones of both comets with orbital elements compatible with the observational uncertainties of the actual orbits and found that their evolution is stable for the past <span><math><mo>∼</mo></math></span> 5000 years. We found four epochs where the relative distance and velocity exhibit simultaneous minima. We studied possible fragmentation events in these epochs by applying a simple break-up model for the generation of fictitious fragments at different relative speeds. Analyzing the orbital distance between the fragments, we found some fragments that exhibit noticeable stable behavior at a very low mutual orbital distance according to several distance definitions, which suggest that those fragments evolve in orbits very similar to that of the P/2003 T12 (SOHO). We conclude that comet P/2003 T12 (SOHO) could be a fragment of comet 169P/NEAT and the most likely epoch for such fragmentation would be at least 2000 years ago (around 94 A.D.), given that the fragments that best resemblance comet P/2003 T12 (SOHO) are found in this epoch.</p></div>","PeriodicalId":20054,"journal":{"name":"Planetary and Space Science","volume":"246 ","pages":"Article 105902"},"PeriodicalIF":1.8000,"publicationDate":"2024-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Planetary and Space Science","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0032063324000667","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
This work provides insights into the possible origin of comet P/2003 T12 (SOHO) and the dynamics of comet fragmentation events. We studied the hypothesis of the origin of the comet P/2003 T12 (SOHO) as a fragment of the Jupiter family comet 169P/NEAT. We studied the recent dynamical evolution of the comet pair and determined the epochs of relative minimum distance and velocity as well as the similarity between the orbits using different criteria following Rożek et al. (2011) and Kholshevnikov et al. (2016). We generated 6000 clones of both comets with orbital elements compatible with the observational uncertainties of the actual orbits and found that their evolution is stable for the past 5000 years. We found four epochs where the relative distance and velocity exhibit simultaneous minima. We studied possible fragmentation events in these epochs by applying a simple break-up model for the generation of fictitious fragments at different relative speeds. Analyzing the orbital distance between the fragments, we found some fragments that exhibit noticeable stable behavior at a very low mutual orbital distance according to several distance definitions, which suggest that those fragments evolve in orbits very similar to that of the P/2003 T12 (SOHO). We conclude that comet P/2003 T12 (SOHO) could be a fragment of comet 169P/NEAT and the most likely epoch for such fragmentation would be at least 2000 years ago (around 94 A.D.), given that the fragments that best resemblance comet P/2003 T12 (SOHO) are found in this epoch.
期刊介绍:
Planetary and Space Science publishes original articles as well as short communications (letters). Ground-based and space-borne instrumentation and laboratory simulation of solar system processes are included. The following fields of planetary and solar system research are covered:
• Celestial mechanics, including dynamical evolution of the solar system, gravitational captures and resonances, relativistic effects, tracking and dynamics
• Cosmochemistry and origin, including all aspects of the formation and initial physical and chemical evolution of the solar system
• Terrestrial planets and satellites, including the physics of the interiors, geology and morphology of the surfaces, tectonics, mineralogy and dating
• Outer planets and satellites, including formation and evolution, remote sensing at all wavelengths and in situ measurements
• Planetary atmospheres, including formation and evolution, circulation and meteorology, boundary layers, remote sensing and laboratory simulation
• Planetary magnetospheres and ionospheres, including origin of magnetic fields, magnetospheric plasma and radiation belts, and their interaction with the sun, the solar wind and satellites
• Small bodies, dust and rings, including asteroids, comets and zodiacal light and their interaction with the solar radiation and the solar wind
• Exobiology, including origin of life, detection of planetary ecosystems and pre-biological phenomena in the solar system and laboratory simulations
• Extrasolar systems, including the detection and/or the detectability of exoplanets and planetary systems, their formation and evolution, the physical and chemical properties of the exoplanets
• History of planetary and space research