Enhancing Arabic Handwritten Recognition System-Based CNN-BLSTM Using Generative Adversarial Networks

M. Rabi, Mustapha Amrouche
{"title":"Enhancing Arabic Handwritten Recognition System-Based CNN-BLSTM Using Generative Adversarial Networks","authors":"M. Rabi, Mustapha Amrouche","doi":"10.24018/ejai.2024.3.1.36","DOIUrl":null,"url":null,"abstract":"\n\n\n\nArabic Handwritten Recognition (AHR) presents unique challenges due to the complexity of Arabic script and the limited availability of training data. This paper proposes an approach that integrates generative adversarial networks (GANs) for data augmentation within a robust CNN-BLSTM architecture, aiming to significantly improve AHR performance. We employ a CNN-BLSTM network coupled with connectionist temporal classification (CTC) for accurate sequence modeling and recognition. To address data limitations, we incorporate a GANs based data augmentation module trained on the IFN-ENIT Arabic handwriting dataset to generate realistic and diverse synthetic samples, effectively augmenting the original training corpus. Extensive evaluations on the IFN-ENIT benchmark demonstrate the efficacy of adopted approach. We achieve a recognition rate of 95.23%, surpassing the baseline model by 3.54%. This research presents a promising approach to data augmentation in AHR and demonstrates a significant improvement in word recognition accuracy, paving the way for more robust and accurate AHR systems.\n\n\n\n","PeriodicalId":360205,"journal":{"name":"European Journal of Artificial Intelligence and Machine Learning","volume":"48 13","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Artificial Intelligence and Machine Learning","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24018/ejai.2024.3.1.36","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Arabic Handwritten Recognition (AHR) presents unique challenges due to the complexity of Arabic script and the limited availability of training data. This paper proposes an approach that integrates generative adversarial networks (GANs) for data augmentation within a robust CNN-BLSTM architecture, aiming to significantly improve AHR performance. We employ a CNN-BLSTM network coupled with connectionist temporal classification (CTC) for accurate sequence modeling and recognition. To address data limitations, we incorporate a GANs based data augmentation module trained on the IFN-ENIT Arabic handwriting dataset to generate realistic and diverse synthetic samples, effectively augmenting the original training corpus. Extensive evaluations on the IFN-ENIT benchmark demonstrate the efficacy of adopted approach. We achieve a recognition rate of 95.23%, surpassing the baseline model by 3.54%. This research presents a promising approach to data augmentation in AHR and demonstrates a significant improvement in word recognition accuracy, paving the way for more robust and accurate AHR systems.
使用生成式对抗网络增强基于 CNN-BLSTM 的阿拉伯语手写识别系统
由于阿拉伯文字的复杂性和训练数据的有限性,阿拉伯语手写识别(AHR)面临着独特的挑战。本文提出了一种方法,将生成对抗网络(GANs)集成到稳健的 CNN-BLSTM 架构中用于数据增强,旨在显著提高阿拉伯语手写识别的性能。我们采用的 CNN-BLSTM 网络与连接主义时序分类 (CTC) 相结合,可实现精确的序列建模和识别。为解决数据限制问题,我们采用了基于 IFN-ENIT 阿拉伯语手写数据集训练的 GANs 数据增强模块,以生成真实、多样的合成样本,从而有效增强原始训练语料库。在 IFN-ENIT 基准上进行的广泛评估证明了所采用方法的有效性。我们的识别率达到 95.23%,比基准模型高出 3.54%。这项研究为 AHR 中的数据扩增提供了一种前景广阔的方法,并显著提高了单词识别准确率,为开发更强大、更准确的 AHR 系统铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信